457
Views
13
CrossRef citations to date
0
Altmetric
Research Article

A new boring toxin producer – Perforafilum tunnelli gen. & sp. nov. (Oscillatoriales, Cyanobacteria) isolated from Laguna Madre, Texas, USA

, , , &
Pages 10-24 | Received 25 Feb 2020, Accepted 07 Aug 2020, Published online: 02 Oct 2020

REFERENCES

  • Al-Thukair A.A. & Golubic S. 1991. New endolithic cyanobacteria from the Arabian Gulf. I. Hyella immanis sp. nov. Journal of Phycology 27: 766–780. DOI: 10.1111/j.0022-3646.1991.00766.x.
  • Anagnostidis K. & Komárek J. 1988. Modern approach to the classification system of cyanophytes, 3 – Oscillatoriales. Algological Studies/Archiv für Hydrobiologie 53: 327–472.
  • Beccati A., Gerken J., Quast C., Yilmaz P. & Glöckner F.O. 2017. SILVA tree viewer: interactive web browsing of the SILVA phylogenetic guide trees. BMC Bioinformatics 18: 433. DOI: 10.1186/s12859-017-1841-3.
  • Boyer S.L., Flechtner V.R. & Johansen J.R. 2001. Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Molecular Biology and Evolution 18: 1057–1069. DOI: 10.1093/oxfordjournals.molbev.a003877.
  • Brito Â., Ramos V., Mota R., Lima S., Santos A., Vieira J., Kaštovský J., Vasconcelos V.M. & Tamagnini P. 2017. Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast. Molecular Phylogenetics and Evolution 111: 18–34. DOI: 10.1016/j.ympev.2017.03.006.
  • Buch B., Martins M.D. & Branco L.H.Z. 2017. A widespread cyanobacterium supported by polyphasic approach: proposition of Koinonema pervagatum gen. & sp. nov. (Oscillatoriales). Journal of Phycology 53: 1097–1105. DOI: 10.1111/jpy.12568.
  • Caires T.A., de Mattos Lyra G., Hentschke G.S., de Gusmão Pedrini A., Sant’Anna C.L. & de Castro Nunes J.M. 2018. Neolyngbya gen. nov. (Cyanobacteria, Oscillatoriaceae): a new filamentous benthic marine taxon widely distributed along the Brazilian coast. Molecular Phylogenetics and Evolution 120: 196–211. DOI: 10.1016/j.ympev.2017.12.009.
  • Chatchawan T., Komárek J., Struneck O., Smarda J. & Peerapornpisal Y. 2012. Oxynema, a new genus separated from the genus Phormidium (Cyanophyta). Cryptogamie, Algologie 33: 41–59. DOI: 10.7872/crya.v33.iss1.2011.041.
  • Cornet L., Wilmott A., Javaux E.J. & Baurain D. 2018. A constrained SSU-rRNA phylogeny reveals the unsequenced diversity of photosynthetic Cyanobacteria (Oxyphotobacteria). BMC Research Notes 11: 435. DOI: 10.1186/s13104-018-3543-y.
  • Dadheech P.K., Abed R.M.M., Mahmoud H., Mohan M.K. & Krienitz L. 2012. Polyphasic characterization of cyanobacteria isolated from desert crusts, and the description of Desertifilum tharense gen. et sp. nov. (Oscillatoriales). Phycologia 51: 260–270. DOI: 10.2216/09-51.1.
  • Dell’Aversano C., Hess P. & Quilliam M.A. 2005. Hydrophilic interaction liquid chromatography–mass spectrometry for the analysis of paralytic shellfish poisoning (PSP) toxins. Journal of Chromatography A 1081: 190–201. DOI: 10.1016/j.chroma.2005.05.056.
  • Drummond A.J., Ho S.Y.W., Phillips M.J. & Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLOS Biology 4: e88. DOI: 10.1371/journal.pbio.0040088.
  • Engene N., Tronholm A. & Paul V.J. 2018. Uncovering cryptic diversity of Lyngbya: the new tropical marine cyanobacterial genus Dapis (Oscillatoriales). Journal of Phycology 54: 435–446. DOI:10.1111/jpy.12752.
  • Fisk H.N. 1959. Padre Island and the Laguna Madre flats: coastal south Texas. In Second Coastal Geography Conference (Ed. by R.J. Russell), pp. 103–152. Baton Rouge, Louisiana, USA.
  • Garcia-Pichel F. & Pringeault O. 2001. Cyanobacteria track water in desert soils. Nature 413: 380–381. DOI: 10.1038/35096640.
  • Garcia-Pichel F., Ramirez-Reinat E. & Gao Q. 2010. Microbial evacuation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport. Proceedings of the National Academy of Science 107: 21749–21754. DOI: 10.1073/pnas.1011884108.
  • Gelman, A. Rubin, D. R. 1992. Inference from iterative simulation using multiple sequences. Statistical Sciences 7: 457–511.
  • Gonzalez-Esquer C.R., Smarda J., Rippka R., Axen S.D., Guglielmi G., Gugger M. & Kerfeld C.A. 2016. Cyanobacterial ultrastructure in light of genomic sequence data. Photosynthesis Research 129: 147–157. DOI: 10.1007/s11120-016-0286-2.
  • González-Resendiz L., Johansen J.R., Escobar-Sánchez V., Segal-Kischinevzky C., Jiménez-García L.F. & León-Tejera H. 2018. Two new species of Phyllonema (Rivulariaceae, Cyanobacteria) with an emendation of the genus. Journal of Phycology 54: 638–652. DOI: 10.1111/jpy.12769.
  • González‐Resendiz L., Johansen J.R., León‐Tejera H., Sánchez L., Segal‐Kischinevzky C., Escobar‐Sánchez V. & Morales, M. 2019. A bridge too far in naming species: a total evidence approach does not support recognition of four species in Desertifilum (Cyanobacteria). Journal of Phycology 55: 898–911. DOI: 10.1111/jpy.12867.
  • Gouy M., Guindon S. & Gascuel O. 2010. SeaView Version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27: 221–224. DOI: 10.1093/molbev/msp259.
  • Halfen L.N. & Castenholz R.W. 1970. Gliding in a blue–green alga: a possible mechanism. Nature 225: 1163–1165. DOI:10.1038/2251163a0.
  • Halfen L.N. & Castenholz R.W. 1971. Gliding motility in the blue–green alga. Oscillatoria princeps. Journal of Phycology 7: 133–145. DOI: 10.1111/j.1529-8817.1971.tb01492.x.
  • Hašler P., Dvořák P., Poulíčková A. & Casamatta D.A. 2014. A novel genus Ammassolinea gen. nov. (Cyanobacteria) isolated from sub-tropical epipelic habitats. Fottea 14: 241–248. DOI: 10.5507/fot.2014.018.
  • Hauer T., Bohunická M., Johansen J.R., Mareš J. & Berrendero-Gomez E. 2014. Reassessment of the cyanobacterial family Microchaetaceae and of new families Tolypothrichaceae and Godleyaceae. Journal of Phycology 50: 1089–1100. DOI: 10.1111/jpy.12241.
  • Heidar, F., Zima, J., Riahi H., & Hauer T. 2018. New simple trichal cyanobacterial taxa isolated from radioactive thermal springs. Fottea 18: 137–149. DOI: 10.5507/fot.2017.024.
  • Hentschke G.S., Johansen J.R., Pietrasiak N., Fiore M.D.F., Rigonato J., Anna C.L.S. & Komárek J. 2016. Phylogenetic placement of Dapisostemon gen. nov. and Streptostemon, two tropical heterocytous genera (Cyanobacteria). Phytotaxa 245: 129–143. DOI: 10.11646/phytotaxa.245.2.4.
  • Herdman M. & Rippka R. 2018. Cyanobacterial phylogenetic tree. http://cyanobact.000webhostapp.com
  • Hoiczyk E. & Baumeister W. 1995. Envelope structure of four gliding filamentous cyanobacteria. Journal of Bacteriology 177: 2387–2395. DOI: 10.1128/JB.177.9.2387-2395.1995.
  • Hoiczyk E. & Baumeister W. 1997. Oscillin, an extracellular, Ca2+ ‐binding glycoprotein essential for the gliding motility of cyanobacteria. Molecular Microbiology 26: 699–708. DOI: 10.1046/j.1365-2958.1997.5971972.x.
  • Hoiczyk E. & Hansel A. 2000. Cyanobacterial cell walls: news from an unusual prokaryotic envelope. Journal of Bacteriology 182: 1191–1199. DOI: 10.1128/JB.182.5.1191-1199.2000.
  • Huang I. & Zimba P.V. 2019. Cyanobacterial bioactive metabolites – a review of their chemistry and biology. Harmful Algae 86: 139–209. DOI:10.1016/j.hal.2019.05.001.
  • Huang I.W., Pinnell L.J. , Turner J.W., Abdulla H., Boyd L., Linton E.W. & Zimba P.V. 2020. Preliminary assessment of microbial community structure of wind-tidal flats in the Laguna Madre, Texas, USA. Biology 9: 183. DOI: 10.3390/biology9080183.
  • Jungblut A.D., Hawes I., Mountfort D., Hitzfeld B., Dietrich D.R., Burns B.P. & Neilan B.A. 2005. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environmental Microbiology 7: 519–529. DOI: 10.1111/j.1462-2920.2005.00717.x.
  • Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. DOI: 10.1093/molbev/mst010.
  • Kirkwood A.E., Buchheim J.A., Buchheim M.A. & Henley W.J. 2008. Cyanobacterial diversity and halotolerance in a variable hypersaline environment. Microbial Ecology 55: 453–465.
  • Komárek J. 2018. Delimitation of the family Oscillatoriaceae (Cyanobacteria) according to the modern polyphasic approach (introductory review). Brazilian Journal of Botany 41: 449–456. DOI: 10.1007/s40415-017-0415-y.
  • Komárek J., Kaštovský J., Mareš J. & Johansen J.R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86: 295–335.
  • Kumar S., Stecher G., Li M., Knyaz C., & Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. DOI: 10.1093/molbev/msy096.
  • Ludwig W. 2004. ARB: a software environment for sequence data. Nucleic Acids Research 32: 1363–1371. DOI: 10.1093/nar/gkh293.
  • Maddison W.P. & Maddison D.R. 2018. Mesquite: a modular system for evolutionary analysis. Version 3.51. http://www.mesquiteproject.org
  • Mai T., Johansen J.R., Pietrasiak N., Bohunická M. & Martin M.P. 2018. Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa 365: 1–59. DOI: 10.11646/phytotaxa.365.1.1.
  • Mareš J. 2018. Multilocus and SSU rRNA gene phylogenetic analyses of available cyanobacterial genomes, and their relation to the current taxonomic system. Hydrobiologia 811: 1–16. DOI: 10.1007/s10750-017-3373-2.
  • Mareš J., Strunecký O., Bučinská L. & Wiedermannová J. 2019. Evolutionary patterns of thylakoid architecture in cyanobacteria. Frontiers of Microbiology 10: 1–22. DOI: 10.3389/fmicb.2019.00277.
  • Martins M.D., Machado-de-Lima N.M. & Branco L.H.Z. 2019. Polyphasic approach using multilocus analyses supports the establishment of the new aerophytic cyanobacterial genus Pycnacronema (Coleofasciculaceae, Oscillatoriales). Journal of Phycology 55: 146–159. DOI: 10.1111/jpy.12805.
  • Martins M.D., Rigonato J., Branco L.H.Z. & Taboga S.R. 2016. Proposal of Ancylothrix gen. nov., a new genus of Phormidiaceae (Cyanobacteria, Oscillatoriales) based on a polyphasic approach. International Journal of Systematic and Evolutionary Microbiology 66: 2396–2405. DOI: 10.1099/ijsem.0.001044.
  • McKee D.A. 2008. Fishes of the Laguna Madre: a guide for anglers and naturalists. Texas A&M University Press, College Station, Texas, USA. 224 pp.
  • Mikhailyuk T.I., Vinogradova O.N., Glaser K. & Karsten U. 2016. New taxa for the flora of Ukraine, in the context of modern approaches to taxonomy of Cyanoprokaryota/Cyanobacteria. International Journal of Algae 18: 301–320. DOI: 10.1615/InterJAlgae.v18.i4.10.
  • Miller M., Schwartz T., Pickett B., He S., Klem E., Scheuermann R. & O’Leary M. 2015. A RESTful API for access to phylogenetic tools via the CIPRES Science Gateway. Evolutionary Bioinformatics 11: 43–48.
  • Moreira D., Tavera R., Benzerara K., Skouri-Panet F., Couradeau E., Gérard E., Fonta C.L., Novelo E., Zizanovic Y. & López-García P. 2017. Description of Gloeomargarita lithophora gen. nov., sp. nov., a thylakoid-bearing, basal-branching cyanobacterium with intracellular carbonates, and proposal for Gloeomargaritales ord. nov. International Journal of Systematic and Evolutionary Microbiology 67: 653–658. DOI: 10.1099/ijsem.0.001679.
  • Mühlsteinova R., Hauer T., De Ley P. & Pietrasiak N. 2018. Seeking the true Oscillatoria: a quest for a reliable phylogenetic and taxonomic reference point. Preslia 90: 151–169. DOI: 10.23855/preslia.2018.151.
  • Nguyen L.-T., Schmidt H.A., von Haeseler A. & Minh B.Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274.
  • Nowicka-Krawczyk P., Mühlsteinová R. & Hauer T. 2019. Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria). Scientific Reports 9: 694. DOI: 10.1038/s41598-018-36831-0.
  • Okonechnikov K., Golosov O. & Fursov M. 2012. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28: 1166–1167. DOI: 10.1093/bioinformatics/bts091.
  • Oren A. 2015. Cyanobacteria in hypersaline environments: biodiversity and physiological properties. Biodiversity Conservation 24: 781–798. DOI:10.1007/s10531-015-0882-z.
  • Osorio-Santos K., Pietrasiak N., Bohunická M., Miscoe L.H., Kováčik L., Martin M.P. & Johansen J.R. 2014. Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. European Journal of Phycology 49: 450–470. DOI: 10.1080/09670262.2014.976843.
  • Perkerson III R.B., Johansen J.R., Kovácik L., Brand J., Kaštovský J. & Casamatta D.A. 2011. A unique pseudanabaenalean (Cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data. Journal of Phycology 47: 1397–1412. DOI: 10.1111/j.1529-8817.2011.01077.x.
  • Price M.N., Dehal P.S. & Arkin A.P. 2010. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLOS One 5: e9490. DOI:10.1371/journal.pone.0009490.
  • Pruesse E., Peplies J. & Glöckner F.O. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823–1829. DOI: 10.1093/bioinformatics/bts252.
  • Pulich W., Jr & Rabalais S. 1986. Primary production potential of blue-green mats on southern Texas tidal flats. Southwestern Naturalist 31: 39–47. DOI: 10.2307/3670958.
  • Ramos V.M.C., Castelo-Branco R., Leao P.N., Martina J., Carvalhal-Gomes S., da Silva F.S., Filho J.G.M. & Vasconcelos V.M. 2017. Cyanobacterial diversity in microbial mats from the hypersaline lagoon system of Araruama Lagoon, Brazil: an in-depth polyphasic study. Frontiers of Microbiology 8: 1233. DOI: 10.3389/fmicb.2017.01233.
  • Robinson D.F. & Foulds L.R. 1981. Comparison of phylogenetic trees. Mathematical Biosciences 53: 131–147. DOI: 10.1016/0025-5564(81)90043-2.
  • Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Hohna S., Large B., Liu L., Suchard M.A. & Huelsenbeck J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. DOI: 10.1093/sysbio/sys029.
  • Rudi K., Skulberg O.M. & Jakobsen K.S. 1998. Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. Journal of Bacteriology 180: 3453–3461. DOI: 10.1128/JB.180.13.3453-3461.1998.
  • Sendall B.C. & McGregor G.B. 2018. Cryptic diversity within the Scytonema complex: characterization of the paralytic shellfish toxin producer Heteroscytonema crispum, and the establishment of the family Heteroscytonemataceae (Cyanobacteria/Nostocales). Harmful Algae 80: 158–170. DOI: 10.1016/j.hal.2018.11.002.
  • Seo P.S. & Yokota A. 2003. The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. Journal of General Applied Microbiology 49: 191–203. DOI: 10.2323/jgam.49.191.
  • Shalygin S., Huang I. & Zimba P.V. 2019. Odorella benthonica gen. & sp. nov. (Pleurocapsales, Cyanobacteria): an odor and prolific toxin producer isolated from a California aqueduct. Journal of Phycology 55: 509–520. DOI: 10.1111/jpy.12834.
  • Shalygin S., Kavulic K.J., Pietrasiak N., Bohunická M., Vaccarino M.A., Chesarino N.M. & Johansen J.R. 2019. Neotypification of Pleurocapsa fuliginosa and epitypification of P. minor (Pleurocapsales): resolving a polyphyletic cyanobacterial genus. Phytotaxa 392: 245–263. DOI: 10.11646/phytotaxa.392.4.1.
  • Shalygin S., Pietrasiak N., Gomez F., Mlewski S., Gerard E. & Johansen J.R. 2018. Rivularia halophila sp. nov. (Nostocales, Cyanobacteria): the first species of Rivularia described with the modern polyphasic approach. European Journal of Phycology 53: 537–548. DOI: 10.1080/09670262.2018.1479887.
  • Shalygin S., Shalygina R., Johansen J.R., Pietrasiak N., Berrendero Gómez E., Bohunická M., Mareš J. & Sheil C.A. 2017. Cyanomargarita gen. nov. (Nostocales, Cyanobacteria): convergent evolution resulting in a cryptic genus. Journal of Phycology 53: 762–777. DOI: 10.1111/jpy.12542.
  • Shepard R.N. & Sumner D.Y. 2010. Undirected motility of filamentous cyanobacteria produces reticulate mats. Geobiology 8: 179–190. DOI: 10.1111/j.1472-4669.2010.00235.x.
  • Shih P.M., Wu D., Latifi A., Axen S.D., Fewer D.P., Talla E., Calteau A., Cai F., Tandeau de Marsac N., Rippka R. et al. 2013. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proceedings of the National Academy of Sciences of the United States of America 110: 1053-1058. DOI: 10.1073/pnas.1217107110.
  • Sorochkina K., Ayuso S.V. & Garcia-Pichel F. 2018. Establishing rates of lateral expansion of cyanobacterial biological crusts for optimal restoration. Plant and Soil 429: 199–211. DOI: 10.1007/s11104-018-3695-5.
  • Strunecký O., Bohunická M., Johansen J.R., Čapková K., Raabová L., Dvořák P. & Komárek J. 2017. A revision of the genus Geitlerinema and a description of the genus Anagnostidinema gen. nov. (Oscillatoriophycidae, Cyanobacteria). Fottea 17: 114–126. DOI: 10.5507/fot.2016.025.
  • Strunecký O., Komárek J. & Šmarda J. 2014. Kamptonema (Microcoleaceae, Cyanobacteria), a new genus derived from the polyphyletic Phormidium on the basis of combined molecular and cytomorphological markers. Preslia 86: 193–207.
  • Towns J., Cockerill T., Dahan M., Foster I., Gaither K., Grimshaw A., Hazlewood V., Lathrop S., Lifka D., Peterson G.D. et al. 2014. XSEDE: accelerating scientific discovery. Computing in Science and Engineering 16: 62–74. DOI: 10.1109/MCSE.2014.80.
  • Tunnell J.W., Jr & Judd F.W. 2002. The Laguna Madre of Texas and Tamaulipas. Texas A&M University Press, College Station, Texas, USA. 346 pp.
  • Vinogradova O., Mikhailyuk T., Glaser K., Holzinger A. & Karsten U. 2017. New species of Oculatella (Synechococcales, Cyanobacteria) from terrestrial habitats of Ukraine. Ukranian Botanical Journal 74: 509–520. DOI: 10.15407/ukrbotj74.06.509.
  • Withers K. 2002. Wind-tidal flats. In: The Laguna Madre of Texas and Tamaulipas (Ed. by J.W. Tunnell, Jr. & F.W. Judd), pp. 114–126. Texas A&M University Press, College Station, Texas, USA.
  • Wong H.L., Ahmed-Co A. & Bruns B.P. 2016. Molecular ecology of hypersaline microbial mats: current insights and new directions. Microorganisms 4: 6. DOI: 10.3390/microorganisms4010006.
  • Yarza P., Yilmaz P., Pruesse E., Glöckner F.O., Ludwig W., Schleifer K.-H., Whitman W.B., Euzéby J., Rudolf A. & Rosselló-Móra R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology 12: 635–645. DOI: 10.1038/nrmicro3330.
  • Zammit G. 2018. Systematics and biogeography of sciophilous cyanobacteria; an ecological and molecular description of Albertania skiophila (Leptolyngbyaceae) gen. & sp. nov. Phycologia 57: 481–491. DOI: 10.2216/17-125.1.
  • Zimba P.V. 2012. An improved method for phycobilin analysis. Harmful Algae 17: 35–39. DOI: 10.1016/j.hal.2012.02.009.
  • Zimba P.V., Dionigi C.P. & Millie D.F. 1999. Evaluating the relationship between photopigment synthesis and 2-methylisoborneol accumulation in cyanobacteria. Journal of Phycology 35: 1422–1429. DOI: 10.1046/j.1529-8817.1999.3561422.x.
  • Zimba P.V., Huang I., Fole J.E. & Linton E.W. 2017. Identification of a new-to-science cyanobacterium, Toxifilum mysidocida gen. nov. & sp. nov. (Cyanobacteria, Cyanophyceae). Journal of Phycology 53: 188–197. DOI: 10.1111/jpy.12490.
  • Zwickl D.J. & Hillis D.M. 2002. Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology 51: 588–598. DOI: 10.1080/10635150290102339.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.