136
Views
0
CrossRef citations to date
0
Altmetric
Research Note

Measurement of DIC acquisition and evidence for a CO2 concentrating mechanism in Gephyrocapsa oceanica (Isochrysidales, Coccolithophyceae)

ORCID Icon & ORCID Icon
Pages 29-35 | Received 22 Sep 2022, Accepted 12 Oct 2022, Published online: 05 Dec 2022

REFERENCES

  • Bach L.T., Mackinder L.C.M., Schulz K.G., Wheeler G., Schroeder D.C., Brownlee C. & Riebesell U. 2013. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytologist 199: 121–134. DOI: 10.1111/nph.12225.
  • Beardall J., Mukerji D., Glover H.E. & Morris I. 1976. The path of carbon in photosynthesis by marine phytoplankton. Journal of Phycology 12: 409–417.
  • Beardall J., Johnston A. & Raven J. 1998. Environmental regulation of CO2-concentrating mechanisms in microalgae. Canadian Journal of Botany 76: 1010–1017. DOI: 10.1139/b98-079.
  • Beardall J. & Raven J.A. 2004. The potential effects of global climate change on microalgal photosynthesis. Phycologia 43: 26–40. DOI: 10.2216/i0031-8884-43-1-26.1.
  • Beardall J., Stojkovic S. & Larsen S. 2009. Living in a high CO2 world: impacts of global climate change on marine phytoplankton. Plant Ecology & Diversity 2: 191–205. DOI: 10.1080/17550870903271363.
  • Beardall J., Roberts S. & Raven J.A. 2011. Regulation of inorganic carbon acquisition by phosphorus limitation in the green alga Chlorella emersonii. Canadian Journal of Botany 83: 859–864. DOI: 10.1139/b05-070.
  • Beardall J. & Raven J.A. 2013. Calcification and ocean acidification: new insights from the coccolithophore Emiliania huxleyi. New Phytologist 199: 1–3. DOI: 10.1111/nph.12297.
  • Beardall J. & Raven J.A. 2020. Structural and biochemical features of carbon acquisition in algae. In: Photosynthesis in algae: biochemical and physiological mechanisms (Ed. by A.W.D. Larkum, A. Grossman & J.A. Raven), pp 141–160. Springer, Cham, Switzerland.
  • Benson B.B. & Krause D. 1984. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnology and Oceanography 29: 620–632. DOI: 10.4319/lo.1984.29.3.0620.
  • Boller A.J., Thomas P.J., Cavanaugh C.M. & Scott K.M. 2011. Low stable carbon isotope fractionation by coccolithophore RubisCO. Geochimica et Cosmochimica Acta 75: 7200–7207. DOI: 10.1016/j.gca.2011.08.031.
  • Buitenhuis E.T., de Baar H.J.W. & Veldhuis M.J.W. 1999. Photosynthesis and calcification by Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon species. Journal of Phycology 35: 949–959. DOI: 10.1046/j.1529-8817.1999.3550949.x.
  • Del Giorgio P.A. & Williams P.J.B. [Eds] 2005. Respiration in aquatic ecosystems. Oxford University Press, New York, USA. 315 pp.
  • Doney S.C., Fabry V.J., Feely R.A. & Kleypas J.A. 2009. Ocean acidification: the other CO2 problem. Annual Reviews of Marine Science 1: 169–192. DOI: 10.1146/annurev.marine.010908.163834.
  • Feuillade J. & Feuillade M. 1979. A chemostat device adapted to planktonic Oscillatoria cultivation. Limnology and Oceanography 24: 562–564. DOI: 10.4319/lo.1979.24.3.0562.
  • Franklin D.J., Choi J.C., Hughes C., Malin G. & Berges J.A. 2009. Effect of dead phytoplankton cells on the apparent efficiency of photosystem II. Marine Ecology Progress Series 382: 35–40. DOI: 10.3354/meps07967.
  • González E.L. 2004. The proton pump of the calcifying vesicle of the coccolithophore Pleurochrysis. In: Biomineralization: from biology to biotechnology and medical application, and E. Bäuerlein), pp 217–228. Wiley, Weinheim, Germany.
  • Hassenkam T., Johnsson A., Bechgaard K. & Stipp S.L.S. 2011. Tracking single coccolith dissolution with picogram resolution and implications for CO2 sequestration and ocean acidification. Proceedings of the National Academy of Sciences 108: 8571–8576. DOI: 10.1073/pnas.1009447108.
  • Iglesias-Rodriguez D., Halloran P.R., Rickaby R.E.M., Hall I.R., Colmenero-Hidalgo E., Gittins J.R., Green D.R.H., Tyrrell T., Gibbs S.J., von Dassow P. et al. 2008. Phytoplankton calcification in a high-CO2 world. Science 320: 336–340. DOI: 10.1126/science.1154122.
  • Jin P., Gao K. & Beardall J. 2013. Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification. Evolution 67: 1869–1878. DOI: 10.1111/evo.12112.
  • Johnston A.M., Maberly S.C. & Raven J.A. 1992. The acquisition of inorganic carbon by four red macroalgae. Oecologia 92: 317–326. DOI: 10.1007/BF00317457.
  • Keller M.D., Selvin R.C., Claus W. & Guillard R.R.L. 1987. Media for the culture of oceanic ultraphytoplankton. Journal of Phycology 23: 633–638. DOI: 10.1111/j.1529-8817.1987.tb04217.x.
  • Larsen S.H. & Beardall J. 2021. The effect of CO2 concentration on DMSP production in Gephyrocapsa oceanica (Isochrysidales, Coccolithophyceae). Phycologia 60: 439–448. DOI: 10.1080/00318884.2021.1944016.
  • Larsen S.H., Inhken S. & Beardall J. 2022. The stability of pH and dissolved inorganic carbon (DIC) in microalgal culture media. Phycologia 61: 97–103. DOI: 10.1080/00318884.2021.2015892.
  • Leung J.Y.S., Zhang S. & Connell S.D. 2022. Is ocean acidification really a threat to marine calcifiers? A systematic review and meta-analysis of 980+ studies spanning two decades. Small 7: Article e2107407. DOI: 10.1002/smll.202107407.
  • Mackay R.R.M., Morris J.J., Morel F.M.M. & Kranz S.A. 2018. Response of photosynthesis to ocean acidification. Oceanography 28: 74–91.
  • McConnaughey T.A. & Whelan J.F. 1997. Calcification generates protons for nutrient and bicarbonate uptake. Earth Science Reviews 42: 95–117. DOI: 10.1016/S0012-8252(96)00036-0.
  • McConnaughey T.A. 1998. Acid secretion, calcification, and photosynthetic carbon concentrating mechanisms. Canadian Journal of Botany 76: 1119–1126. DOI: 10.1139/b98-066.
  • McIntyre A. 1970. Gephyrocapsa protohuxleyi sp. n. a possible phyletic link and index fossil for the Pleistocene. Deep Sea Research 17: 187–190.
  • Moolna A. & Rickaby R.E.M. 2013. Interaction of the coccolithophore Gephyrocapsa oceanica with its carbon environment: response to a recreated high-CO2 geological past. Geobiology 10: 72–81. DOI:10.1111/j.1472-4669.2011.00308.x.
  • Nimer N.A. & Merrett M.J. 1992. Calcification and utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi Lohmann. New Phytologist 121: 173–177. DOI: 10.1111/j.1469-8137.1992.tb01102.x.
  • Prieto F.J.M. & Millero F.J. 2002. The values of pK1 + pK2 for the dissociation of carbonic acid in seawater. Geochimica et Cosmochimica Acta 66: 2529–2540. DOI: 10.1016/S0016-7037(02)00855-4.
  • Raven J.A. & Beardall J. 2003. Carbon acquisition mechanisms of algae: carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In: Photosynthesis in algae (Ed. by W. Larkum, S.E. Douglas & J.A. Raven), pp 225–244. Kluwer Academic Publishers, London, UK.
  • Raven J.A. & Beardall J. 2005. Respiration in aquatic photolithotrophs. In: Respiration in aquatic ecosystems (Ed. by P.A. Del Giorgio & P.J.B. Williams), pp 36–46. Oxford University Press, New York, USA.
  • Rickaby R.E.M., Henderiks J. & Young J.N. 2010. Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species. Climate of the Past 6: 771–785. DOI: 10.5194/cp-6-771-2010.
  • Riebesell U., Zondervan I., Rost B., Tortell P.D., Zeebe R.E. & Morel F.M.M. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407: 364–367. DOI: 10.1038/35030078.
  • Robinson C. 2019. Microbial respiration, the engine of ocean deoxygenation. Frontiers in Marine Science 5: Article 533. DOI: 10.3389/fmars.2018.00533.
  • Sekino K. & Shiraiwa Y. 1994. Accumulation and utilization of dissolved inorganic carbon by a marine unicellular coccolithophorid, Emiliania huxleyi. Plant & Cell Physiology 35: 353–361.
  • Sekino K., Kobayashi H. & Shiraiwa Y. 1996. Role of coccoliths in the utilization of inorganic carbon by a marine unicellular coccolithophorid, Emiliania huxleyi: a survey using intact cells and protoplasts. Plant & Cell Physiology 37: 123–127. DOI: 10.1093/oxfordjournals.pcp.a028921.
  • Shelp B.J. & Canvin D.T. 1980. Photorespiration and oxygen inhibition of photosynthesis in Chlorella pyrenoidosa. Plant Physiology 65: 780–784. DOI: 10.1104/pp.65.5.780.
  • Shiraiwa Y., Danbara A. & Kanke Y. 2004. Characterization of highly oxygen-sensitive photosynthesis in coccolithophorids. The Japanese Journal of Phycology 52: 87–94.
  • Sikes C.S., Roer R.D. & Wilbur K.M. 1980. Photosynthesis and coccolith formation: inorganic carbon sources and net inorganic reaction and deposition. Limnology and Oceanography 25: 248–261. DOI: 10.4319/lo.1980.25.2.0248.
  • Stojkovic S., Beardall J. & Matear R. 2013. CO2-concentrating mechanisms in three southern hemisphere strains of Emiliania huxleyi. Journal of Phycology 49: 670–679. DOI: 10.1111/jpy.12074.
  • von Caemmerer S., Evans J.R., Hudson G.S. & Andrews T.J. 1994. The kinetics of ribulose-1,5-bisphosphate carboxylase-oxygenase in vivo inferred from the leaves of transgenic tobacco. Planta 195: 85–97. DOI: 10.1007/BF00206296.
  • Williams P.J. & Robertson J.E. 1991. Overall planktonic oxygen and carbon dioxide metabolisms: the problem of reconciling observations and calculations of photosynthetic quotients. Journal of Plankton Research 13: 153–169.
  • Witzel F., Götze J. & Ebenhöh O. 2010. Slow deactivation of ribulose 1,5-bisphosphate carboxylase/oxygenase elucidated by mathematical models. FEBS Journal 277: 931–950. DOI: 10.1111/j.1742-4658.2009.07541.x.
  • Young E.B. & Beardall J. 2005. Modulation of photosynthesis and inorganic carbon acquisition in a marine microalga by nitrogen, iron and light availability. Canadian Journal of Botany 83: 917–928. DOI: 10.1139/b05-081.
  • Young J.R. & Ziveri P. 2000. Calculation of coccolith volume and its use in calibration of carbonate flux estimates. Deep-Sea Research II 47: 1679–1700. DOI: 10.1016/S0967-0645(00)00003-5.
  • Young J.N., Heureux A.M.C., Sharwood R.E., Rickaby R.E.M., Morel F.M.M. & Whitney S.M. 2016. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. Journal of Experimental Botany 67: 3445–3456. DOI: 10.1093/jxb/erw163.
  • Zeebe R.E. & Wolf-Gladrow D.A. 2001. CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam, Netherlands. 360 pp.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.