122
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Chloromonas fuhrii sp. nov. (Chlorophyceae), a cosmopolitan alga from colored snow

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 211-224 | Received 15 May 2023, Accepted 30 Jan 2024, Published online: 20 Feb 2024

REFERENCES

  • Andersen R.A. [Ed] 2005. Algal culturing techniques. Elsevier Academic Press, London. 578 pp.
  • Baas-Becking L.G.M. 1934. Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon, The Hague, The Netherlands. 263 pp.
  • Barcytė D., Hodač L. & Nedbalová L. 2020. Overlooked diversity with terrestrial lifestyle in the predominantly freshwater and snow phylogroup Chloromonadinia (Volvocales, Chlorophyceae). European Journal of Phycology 55: 207222. DOI: 10.1080/09670262.2019.1681519.
  • Barcytė D., Hodač L., Nedbalová L. & Elster J. 2018. Chloromonas svalbardensis n. sp. with insights into the phylogroup Chloromonadinia (Chlorophyceae). Journal of Eukaryotic Microbiology 65: 882–892. DOI: 10.1111/jeu.12633.
  • Bolch C.J.S. & Blackburn S.I. 1996. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. Journal of Applied Phycology 8: 5–13.
  • Brown S.P. & Jumpponen A. 2019. Microbial ecology of snow reveals taxa-specific biogeographical structure. Microbial Ecology 77: 946–958. DOI: 10.1007/s00248-019-01357-z.
  • Brown S.P. & Tucker A.E. 2020. Distribution and biogeography of Sanguina snow algae: fine-scale sequence analyses reveal previously unknown population structure. Ecology and Evolution 10: 11352–11361. DOI: 10.1002/ece3.6772.
  • Buchheim M.A., Buchheim J.A. & Chapman R.L. 1997. Phylogeny of Chloromonas (Chlorophyceae): a study of 18S ribosomal gene sequences. Journal of Phycology 33: 286–293. DOI: 10.1111/j.0022-3646.1997.00286.x.
  • Caisová L., Marin B. & Melkonian M. 2013. A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction. Protist 164: 482–96. DOI: 10.1016/j.protis.2013.04.005.
  • Cockell C.S. 2021. Are microorganisms everywhere they can be? Environmental Microbiology 23: 6355–6363. DOI: 10.1111/1462-2920.15825.
  • Coleman A.W. 2009. Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Molecular Phylogenetics and Evolution 50: 197–203. DOI: 10.1016/j.ympev.2008.10.008.
  • Davey M.P., Norman L., Sterk P., Huete-Ortega M., Bunbury F., Loh B.K.W., Stockton S., Peck L.S., Convey P., Newsham K.K. & Smith A.G. 2019. Snow algae communities in Antarctica: metabolic and taxonomic composition. New Phytologist 222: 1242. DOI: 10.1111/nph.15701.
  • Engstrom C.B., Williamson S.N., Gamon J.A. & Quarmby L.M. 2022. Seasonal development and radiative forcing of red snow algal blooms on two glaciers in British Columbia, Canada, summer 2020. Remote Sensing of Environment 280: 113164. DOI: 10.1016/j.rse.2022.113164.
  • Engstrom C.B., Yakimovich K.M. & Quarmby L.M. 2020. Variation in snow algae blooms in the Coast Range of British Columbia. Frontiers in Microbiology 11: 569. DOI: 10.3389/fmicb.2020.00569.
  • Ettl H. 1970. Die Gattung Chloromonas Gobi Emend. Wille. Beihefte zu Nova Hedwigia 34: 1–283.
  • Ettl H. 1983. Chlorophyta I: Phytomonadina. Süsswasserflora von Mitteleuropa Bd. 9. G. Fischer, Stuttgart, New York. 807 p.
  • Fritsch F.E. 1912. Freshwater algae collected in the South Orkney Islands by Mr R.N. Rudmose-Brown, BSc, of the Scottish National Antarctic Expedition, 1902-04. Journal of the Linnean Society London Botany 40: 293–338.
  • Gavelis G.S., Keeling P.J. & Leander B.S. 2017. How exaptations facilitated photosensory evolution: seeing the light by accident. Bioessays 39:1600266. DOI: 10.1002/bies.201600266.
  • Gobi C. 1899-1900. Über einen neuen parasitischen Pilz, Rhizidiomyces ichneumon nov. sp., und seinen Nährungsorganismus Chloromonas globulosa (Perty). Scripta Botanica Horti Universitatis Imperialis Petropolitani 15: 251–272.
  • Guiry M.D. & Guiry G.M. 2023. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org ; searched on 1 March 2023.
  • Felsenstein, J. 2005. PHYLIP (Phylogeny Inference Package) version 3.6. https://evolution.genetics.washington.edu/phylip.
  • Friedl T. 1996. Evolution of the polyphyletic genus Pleurastrum (Chlorophyta): inference from nuclear-encoded ribosomal DNA sequences and motile cell ultrastructure. Phycologia 35: 456–469.
  • Hamby R.K., Sim L.E., Issel L.E. & Zimmer E.A. 1988. Direct RNA sequencing: optimization of extraction and sequencing techniques for work with higher plants. Plant Molecular Biology Reporter 6: 179–97. DOI: 10.1007/BF02669591.
  • Hoham R.W. 1975. The life history and ecology of the snow alga Chloromonas pichinchae (Chlorophyta, Volvocales). Phycologia 14: 213–226. DOI: 10.2216/i0031-8884-14-4-213.1.
  • Hoham R.W. & Mullet J.E. 1977. The life history and ecology of the snow alga Chloromonas cryophila sp. nov. (Chlorophyta, Volvocales). Phycologia 16: 53–68. DOI: 10.2216/i0031-8884-16-1-53.1.
  • Hoham R.W. & Mullet J.E. 1978. Chloromonas nivalis (Chod.) Hoh. & Mull. comb. nov., and additional comments on the snow alga Scotiella. Phycologia 17: 106–107. DOI: 10.2216/i0031-8884-17-1-106.1.
  • Hoham R.W. & Blinn D.W. 1979. Distribution of cryophilic algae in an arid region, the American Southwest. Phycologia 18: 133–145. DOI: 10.2216/i0031-8884-18-2-133.1.
  • Hoham R.W. & Remias D. 2020. Snow and glacial algae: a review. Journal of Phycology 56: 264–282. DOI: 10.1111/jpy.12952.
  • Hoham R.W., Roemer S.C. & Mullet J.E. 1979. The life history and ecology of the snow alga Chloromonas brevispina comb. nov. (Chlorophyta, Volvocales). Phycologia 18: 55–70. DOI: 10.2216/i0031-8884-18-1-55.1.
  • Hoham R.W., Mullet J.E. & Roemer S.C. 1983. The life history and ecology of the snow alga Chloromonas polyptera comb. nov. (Chlorophyta, Volvocales). Phycologia 61: 2416–2429. DOI: 10.1139/b83-266.
  • Hoham R.W., Bonome T.A., Martin C.W. & Leebens-Mack J.H. 2002. A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. Journal of Phycology 38: 1051–1064. DOI: 10.1046/j.1529-8817.2002.t01-1-01227.x.
  • Hoham R.W., Berman J.D., Rogers H.S., Felio J.H., Ryba J.B. & Miller P.R. 2006. Two new species of green snow algae from Upstate New York, Chloromonas chenangoensis sp. nov. and Chloromonas tughillensis sp. nov. (Volvocales, Chlorophyceae) and the effects of light on their life cycle development. Phycologia 45: 319–30. DOI: 10.2216/04-103.1.
  • Hoham R.W., Frey F.M., Mohn W.W., Felio J.H., Todd S., Duncan J.E. & Banghart J.B. 2008. Optimum growth temperatures of three species of green Chloromonas snow algae from Upstate New York and the White Mountains, Arizona. Arctic, Antarctic, and Alpine Research 40: 355–363. DOI: 10.1657/1523-0430(07-038)[HOHAM]2.0.CO;2.
  • Hoham R.W., Ragan M.D., Marcarelli A.M., Petre B.M., Barnes J.M., Rogers H.S. & Ungerer M.D. 2000a. The effects of Vita-Lite and blue light pre-acclimation on sexual reproduction in the green snow alga, Chloromonas sp.-D (Chlorophyceae, Volvocales), using different photoperiods. In: Proceedings of the 57th Eastern Snow Conference (Ed. by J. Hardy), pp 207220. The Eastern Snow Conference, Syracuse, NY.
  • Hoham R.W., Marcarelli A.M., Rogers H.S., Ragan M.D., Petre B.M., Ungerer M.D., Barnes J.M. & Francis D.O. 2000b. The importance of light and photoperiod in sexual reproduction and geographical distribution in the green snow alga, Chloromonas sp.-D (Chlorophyseae, Volvocales). Hydrological Processes 14: 3309–3321. DOI: 10.1002/1099-1085(20001230)14:18<3309::AID-HYP200>3.0.CO;2-R.
  • Hoham R.W., Frey F.M., Berman J.D., Ryba J.B., Duncan J.E., Forbes A.A., Goodridge B.M. & Miller P.R. 2009. The effects of irradiance level, photoperiod, and cell density on sexual reproduction in the green snow alga, Chloromonas chenangoensis (Chlorophyta, Volvocales), from Upstate New York. Nova Hedwigia 89:1–16. DOI: 10.1127/0029-5035/2009/0089-0001.
  • Hotaling S., Price T.L. & Hamilton T.L. 2022. Summer dynamics of microbial diversity on a mountain glacier. mSphere 7: 6. DOI: 10.1128/msphere.00503-22.
  • Johnson P.Z., Kasprzak W.K., Shapiro B.A. & Simon A.E. 2019. RNA2Drawer: geometrically strict drawing of nucleic acid structures with graphical structure editing and highlighting of complementary subsequences. RNA Biology 16: 1667–1671. DOI: 10.1080/15476286.2019.1659081.
  • Kreimer G., Overländer C., Sineshchekov O.A., Stolzis H., Nultsch W. & Melkonian M. 1992. Functional analysis of the eyespot in Chlamydomonas reinhardtii mutant ey 627, mt−. Planta 188: 513–521. DOI: 10.1007/BF00197043.
  • Krug L., Erlacher A., Markut K., Berg G. & Cernava T. 2020. The microbiome of alpine snow algae shows a specific inter-kingdom connectivity and algae-bacteria interactions with supportive capacities. ISME Journal 9: 2197–2210. DOI: 10.1038/s41396-020-0677-4.
  • Kumar S., Stecher G., Li M., Knyaz C. & Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. DOI: 10.1093/molbev/msy096.
  • Lagerheim G. 1892. Die Schneeflora des Pichincha. Berichte der Deutschen Botanischen Gesellschaft 10: 517–534.
  • Leya, T. 2004. Feldstudien und genetische Untersuchungen zur Kryophilie der Schneealgen Nordwestspitzbergens. PhD thesis. Humboldt-Universität zu Berlin, Berlin, Germany. 145 pp.
  • Ling H.U. & Seppelt R.D. 1998. Snow algae of the Windmill Islands, continental Antarctica 3. Chloromonas polyptera (Volvocales, Chlorophyta). Polar Biology 20: 320–324. DOI: 10.1007/s003000050309.
  • Luo W., Ding H.T., Li H.R., Ji Z.Q., Huang K.Y., Zhao W.Y., Yu Y. & Zeng Y.X. 2021. Molecular diversity of the microbial community in coloured snow from the Fildes Peninsula (King George Island, Maritime Antarctica). Polar Biology 43: 1391–1405. DOI: 10.1007/s00300-020-02716-0.
  • Lutz S., Anesio A., Edwards A. & Benning L.G. 2016a. Linking microbial diversity and functionality of arctic glacial surface habitats. Environmental Microbiology 19: 551–565. DOI: 10.1111/1462-2920.13494.
  • Lutz S., Anesio A., Raiswell R., Edwards A., Newton R.J., Gill F., Benning L.G. 2016b. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nature Communications 7: 11968. DOI: 10.1038/ncomms11968.
  • Lutz S., Procházková L., Benning L.G., Nedbalová L. & Remias D. 2019. Evaluating high-throughput sequencing data of microalgae living in melting snow: improvements and limitations. Fottea (Praha) 19: 115–131. DOI: 10.5507/fot.2019.003.
  • Matsuzaki R., Hara Y. & Nozaki H. 2014. A taxonomic study of snow Chloromonas species (Volvocales, Chlorophyceae) based on light and electron microscopy and molecular analysis of cultured material. Phycologia 53: 293–304. DOI: 10.2216/14-3.1.
  • Matsuzaki R., Nozaki H. & Kawachi M. 2018. Taxonomic revision of Chloromonas nivalis (Volvocales, Chlorophyceae) strains, with the new description of two snow-inhabiting Chloromonas species. PLoS ONE 13: e0193603. DOI: 10.1371/journal.pone.0193603.
  • Matsuzaki R., Kawai-Toyooka H., Hara Y. & Nozaki H. 2015. Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus Chloromonas (Volvocales, Chlorophyceae). Phycologia 54: 491–502. DOI: 10.2216/15-33.1.
  • Matsuzaki R., Nozaki H., Takeuchi N., Hara Y. & Kawachi M. 2019. Taxonomic re-examination of Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes from Japan and description of C. muramotoi sp. nov. PLoS ONE 14: e0210986. DOI: 10.1371/journal.pone.0210986.
  • Mikhailyuk T.I., Sluiman H.J., Massalski A., Mudimu O., Demchenko E.M., Kondralyuk S.Y. & Friedl T. 2008. New streptophyte green algae from terrestrial habitats and an assessment of the genus Interfilum (Klebsormidiophyceae, Streptophyta). Journal of Phycology 44: 1586–1603. DOI: 10.1111/j.1529-8817.2008.00606.x.
  • Morel-Laurens, N.M.L. & Feinleib, M.E. 1983. Photomovement in an “eyeless” mutant of Chlamydomonas. Photochemistry and Photobiology 37: 189–194. DOI: 10.1111/j.1751-1097.1983.tb04457.x.
  • Muramoto K., Nakada T., Shitara T., Hara Y. & Nozaki H. 2010. Re-examination of the snow algal species Chloromonas miwae (Fukushima) Muramoto et al., comb. nov. (Volvocales, Chlorophyceae) from Japan, based on molecular phylogeny and cultured material. European Journal of Phycology 45: 27–37. DOI: 10.1080/09670260903272607.
  • Nakashima T., Uetake J., Segawa T., Procházková L., Tsushima A. & Takeuchi N. 2021. Spatial and temporal variations in pigment and species compositions of snow algae on Mt. Tateyama in Toyama Prefecture, Japan. Frontiers in Plant Science 12: 689119. DOI: 10.3389/fpls.2021.689119.
  • Nichols H.W. & Bold H.C. 1965. Trichossarcina polymorpha gen. et sp. nov. Journal of Phycology 1: 34–38. DOI: 10.1111/j.1529-8817.1965.tb04552.x.
  • Novis P.M. 2002. Ecology of the snow alga Chlainomonas kolii (Chlamydomonadales, Chlorophyta) in New Zealand. Phycologia 41: 280–292. DOI: 10.2216/i0031-8884-41-3-280.1
  • Novis P.M., Beer T. & Vallance J. 2008a. New records of microalgae from the New Zealand alpine zone, and their distribution and dispersal. New Zealand Journal of Botany 46: 347366. DOI: 10.1080/00288250809509773.
  • Novis P.M., Podolyan A. & Kodner R. 2023a. New Zealand isolates from snow of the widespread algal genus Raphidonema assigned to a single species. New Zealand Journal of Botany. DOI: 10.1080/0028825X.2023.2193341.
  • Novis P.M., Hoham R.W., Beer T. & Dawson, M. 2008b. Two snow species of the quadriflagellate green alga Chlainomonas (Chlorophyta, Volvocales): ultrastructure and phylogenetic position within the Chloromonas clade. Journal of Phycology 44: 1001–1012. DOI: 10.1111/j.1529-8817.2008.00545.x.
  • Novis P.M., Lorenz M., Broady P.A. & Flint E.A. 2010. Parallela Flint: its phylogenetic position in the Chlorophyceae and the polyphyly of Radiofilum Schmidle. Phycologia 49: 373–383. DOI: 10.2216/09-65.1.
  • Novis P.M., Dhami M., Podolyan A., Matsumoto M. & Kodner R. 2023b. The austral biflagellate Chloromonas rubroleosa (Chlorophyceae) is the closest relative of the unusual quadriflagellate genus Chlainomonas, both found in snow. Journal of Phycology 59: 342355. DOI: 10.1111/jpy.13318.
  • Procházková L., Remias D., Řezanka T. & Nedbalová L. 2018. Chloromonas nivalis subsp. tatrae, subsp. nov. (Chlamydomonadales, Chlorophyta): re-examination of a snow alga from the High Tatra Mountains (Slovakia). Fottea, Olomouc 18: 1–18. DOI: 10.5507/fot.2017.010.
  • Procházková L., Leya T., Křížková H. & Nedbalová L. 2019a. Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiology Ecology 95: fiz064. DOI: 10.1093/femsec/fiz064.
  • Procházková L., Remias D., Řezanka T. & Nedbalová L. 2019b. Ecophysiology of Chloromonas hindakii sp. nov. (Chlorophyceae), causing orange snow blooms at different light conditions. Microorganisms 7: 434. DOI: 10.3390/microorganisms7100434.
  • Procházková L., Matsuzaki R., Řezanka T., Nedbalová L. & Remias D. 2023. The snow alga Chloromonas kaweckae sp. nov. (Volvocales, Chlorophyta) causes green surface blooms in the High Tatras (Slovakia) and tolerates high irradiance. Journal of Phycology 59: 236–248. DOI: 10.1111/jpy.13307.
  • Procházková L., Remias D., Bilger W., Křížková H., Řezanka T. & Nedbalová L. 2020. Cysts of the snow alga Chloromonas krienitzii (Chlorophyceae) show increased tolerance to ultraviolet radiation and elevated visible light. Frontiers in Plant Science 11: 617250. DOI: 10.3389/fpls.2020.617250.
  • Pröschold T., Marin B., Schlösser U.G. & Melkonian M. 2001. Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152: 265–300. DOI: 10.1078/1434-4610-00068.
  • Qin Q.L., Wang Z.B., Cha Q.Q., Liu S.S., Ren X.B., Fu H.H., Sun M.L., Zhao D.L., McMinn A., Chen Y., et al. 2022. Biogeography of culturable marine bacteria from both poles reveals that ‘everything is not everywhere’ at the genomic level. Environmental Microbiology 24: 98109. DOI: 10.1111/1462-2920.15870.
  • Raymond B.B., Engstrom C.B. & Quarmby L.M. 2021. The underlying green biciliate morphology of the orange snow alga Sanguina aurantia. Current Biology 32: R55–R71. DOI: 010.611.j.cub 2021/2 005.
  • Remias D., Karsten U., Lütz C. & Leya T. 2010. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243: 73–86. DOI: 10.1007/s00709-010-0123-y.
  • Remias D., Wastain H., Lütz C. & Leya T. 2013. Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica. Antarctic Science 25: 648–656. DOI: 10.1017/S0954102013000060.
  • Remias D., Procházková L., Nedbalová L., Benning L.G. & Lutz S. 2023. Novel insights in cryptic diversity of snow and glacier ice algae communities combining 18S rRNA gene and ITS2 amplicon sequencing. FEMS Microbiology Ecology 99: 1–10. DOI: 10.1093/femsec/fiad134.
  • Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A. & Huelsenbeck J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. DOI: 10.1093/sysbio/sys029.
  • Segawa T., Matsuzaki R., Takeuchi N., Akiyoshi A., Navarro F., Sugiyama S., Yonezawa T. & Mori H. 2018. Bipolar dispersal of red-snow algae. Nature Communications 9: 3094. DOI: 10.1038/s41467-018-05521-w.
  • Segawa T., Yonezawa T., Matsuzaki R., Mori H., Akiyoshi A., Navarro F., Fujita K., Aizen V.B., Li Z., Mano S. & Takeuchi N. 2023. Evolution of snow algae, from cosmopolitans to endemics, revealed by DNA analysis of ancient ice. The ISME Journal 17: 491–501. DOI: 10.1038/s41396-023-01359-3.
  • Seth K., Kumawat G., Vyas P. & Harish. 2022. The structure and functional mechanism of eyespot in Chlamydomonas. Journal of Basic Microbiology 62: 1169–1178. DOI: 10.1002/jobm.202200249
  • Soto D.F., Franzetti A., Gomez I. & Huovinen P. 2022. Functional filtering and random processes affect the assembly of microbial communities of snow algae blooms at Maritime Antarctic. Science of the Total Environment 805: 150305. DOI: 10.1016/j.scitotenv.2021.150305.
  • Soto D.F., Fuentes R., Huovinen P. & Gomez I. 2020. Microbial composition and photosynthesis in Antarctic snow algae communities: integrating metabarcoding and pulse amplitude modulation fluorometry. Algal Research – Biomass, Biofuels, and Bioproducts 45: 101738. DOI: 10.1016/j.algal.2019.101738.
  • Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. DOI: 10.1093/bioinformatics/btu033.
  • Stamatakis A., Blagojevic F., Nikolopoulos D.S. & Antonopoulos C.D. 2007. Exploring new search algorithms and hardware for phylogenetics: RAxML meets the IBM cell. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology 48: 271–286. DOI: 10.1007/s11265-007-0067-4.
  • Stibal M. & Elster J. 2005. Growth and morphology variation as a response to changing environmental factors in two Arctic species of Raphidonema (Trebouxiophyceae) from snow and soil. Polar Biology 28: 558–567.
  • Swofford D.L. 2002. PAUP* Version 4.0 b10. Phylogenetic Analysis Using Parsimony (* and Other Methods). Sinauer, Sunderland.
  • Thompson J.D., Higgins D.G. & Gibson T.J. 1994. ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–80. DOI: 10.1093/nar/22.22.4673.
  • Tucker A.E. & Brown S.P. 2022. Sampling a gradient of red snow algae bloom density reveals novel connections between microbial communities and environmental features. Scientific Reports 12: 10536. DOI: 10.1038/s41598-022-13914-7.
  • Van Schaik W. 2022. Baas Becking meets One Health. Nature Microbiology 7: 482–483. DOI: 10.1038/s41564-022-01100-4.
  • Vihtakari, M (2024). _ggOceanMaps: Plot data on oceanographic maps using ‘ggplot2’. R package version 2.2.0. https://mikkovihtakari.github.io/ggOceanMaps/.
  • Vimercati L., Solon A.J., Krinsky A., Arán P., Porazinska D.L., Darcy J.L., Dorador C. & Schmidt S.K. 2019. Nieves penitentes are a new habitat for snow algae in one of the most extreme high-elevation environments on Earth. Arctic, Antarctic, and Alpine Research 51: 190–200. DOI: 10.1080/15230430.2019.1618115.
  • White T.J., Bruns T., Lee S. & Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: A guide to methods and applications (Ed. by M. Innis, D. Gelfand, J. Snisky & T. White), pp 315322. Academic Press, New York.
  • Winkel M., Trivedi C.B., Mourot R., Bradley J.A., Vieth-Hillebrand A. & Benning L.G. 2022. Seasonality of glacial snow and ice microbial communities. Frontiers in Microbiology 13: 876848. DOI: 10.3389/fmicb.2022.876848.
  • Yakimovich K.M., Engstrom C.B. & Quarmby L.M. 2020. Alpine snow algae microbiome diversity in the Coast Range of British Columbia. Frontiers in Microbiology 11: 1721. DOI: 10.3389/fmicb.2020.01721.
  • Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31: 3406–3415. DOI: 10.1093/nar/gkg595.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.