24
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A study on some phytochemicals in Arthrospira platensis MGH-1 fortified with calcium and magnesium

, , , ORCID Icon, & ORCID Icon
Received 04 Aug 2023, Accepted 30 Apr 2024, Published online: 07 Jun 2024

REFERENCES

  • Aebi, H. (1984). Catalase in vitro. In R. B. Stockbridge (Ed.), Methods in enzymology (pp. 121–126). Elsevier.
  • Alipour Kakroudi, A., Rahaiee, S., Rajaei Litkohi, H., & Ghanbari Hassan Kiadeh, S. (2021). Comparison of antioxidant and antibacterial activities of various herbal essential oils: An in vitro study. Journal of Birjand University of Medical Sciences, 28, 322–334. http://dx.doi.org/10.32592/JBirjandUnivMedSci.2021.28.4.101
  • Ayed, H. B. A. –. B., Taidi, B., Ayadi, H., Pareau, D., & Stambouli, M. (2016). Magnesium uptake by the green microalga Chlorella vulgaris in batch cultures. Journal of Microbiology & Biotechnology, 26, 503–510. https://doi.org/10.4014/jmb.1507.07039
  • Bailey, R. L., West, K. P., Jr., & Black, R. E. (2015). The epidemiology of global micronutrient deficiencies. Annals of Nutrition and Metabolism, 66, 22–33. https://doi.org/10.1159/000371618
  • Beto, J. A. (2015). The role of calcium in human aging. Clinical Nutrition Research, 4, 1–8. https://doi.org/10.7762/cnr.2015.4.1.1
  • Bolouri‐Moghaddam, M. R., Le Roy, K., Xiang, L., Rolland, F., & Van den Ende, W. (2010). Sugar signalling and antioxidant network connections in plant cells. The FEBS Journal, 277, 2022–2037. https://doi.org/10.1111/j.1742-4658.2010.07633.x
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Chamovitz, D., Sandmann, G., & Hirschberg, J. (1993). Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. Journal of Biological Chemistry, 268, 17348–17353. https://doi.org/10.1016/S0021-9258(19)85341-3
  • Dai, Z. W., Meddar, M., Renaud, C., Merlin, I., Hilbert, G., Delrot, S., & Gomès, E. (2013). Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation. Journal of Experimental Botany, 65, 4665–4677. https://doi.org/10.1093/jxb/ert489
  • Debelius, B., Forja, J. M., DelValls, Á., & Lubián, L. M. (2009). Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicology & Environmental Safety, 72, 1503–1513. https://doi.org/10.1016/j.ecoenv.2009.04.006
  • Demmig-Adams, B., & Adams, W. W. (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, 1, 21–26. https://doi.org/10.1016/S1360-1385(96)80019-7
  • Dolatabadian, A., Sanavy, S. A. M. M., Gholamhoseini, M., Joghan, A. K., Majdi, M., & Kashkooli, A. B. (2013). The role of calcium in improving photosynthesis and related physiological and biochemical attributes of spring wheat subjected to simulated acid rain. Physiology and Molecular Biology of Plants, 19, 189–198. https://doi.org/10.1007/s12298-013-0165-7
  • Dubois, M., Gilles, K., Hamilton, J., Rebers, P., & Smith, F. (1951). A colorimetric method for the determination of sugars. Nature, 168, 167. https://doi.org/10.1038/168167a0
  • Duong, V. T., Thomas-Hall, S. R., & Schenk, P. M. (2015). Growth and lipid accumulation of microalgae from fluctuating brackish and sea water locations in South East Queensland—Australia. Frontiers in Plant Science, 6, Article 136796. https://doi.org/10.3389/fpls.2015.00359
  • Dyal, S. D., Bouzidi, L., & Narine, S. S. (2005). Maximizing the production of γ-linolenic acid in Mortierella ramanniana var. ramanniana as a function of pH, temperature and carbon source, nitrogen source, metal ions and oil supplementation. Food Research International, 38, 815–829. https://doi.org/10.1016/j.foodres.2005.04.002
  • Ermis, H., Guven-Gulhan, U., Cakir, T., & Altinbas, M. (2020). Effect of iron and magnesium addition on population dynamics and high value product of microalgae grown in anaerobic liquid digestate. Scientific Reports, 10, 1–12. https://doi.org/10.1038/s41598-019-56847-4
  • Falquet, J., & Hurni, J. P. (1997). The nutritional aspects of Spirulina. Antenna Foundation.
  • Galani, Y., Orfila, C., & Gong, Y. (2022). A review of micronutrient deficiencies and analysis of maize contribution to nutrient requirements of women and children in Eastern and Southern Africa. Critical Reviews in Food Science and Nutrition, 62, 1568–1591. https://doi.org/10.1080/10408398.2020.1844636
  • Ghanbari, H. K. S., Rahaiee, S., Azizi, H., & Govahi, M. (2021). Evaluation of biological activities of raw and cooked Brassica oleracea sprout extracts rich in bioactive compound Sulforaphane. Journal of Birjand University of Medical Sciences, 28, 236–247. http://dx.doi.org/10.32592/JBirjandUnivMedSci.2021.28.3.102
  • Ghanbarzadeh, M., Moazami, N., Shahavi, M. H., & Mirdamadi, S. (2022). Study of bioactive compounds in Arthrospira platensis MGH-1 fortified with micronutrients of iron, zinc, and manganese. Journal of Applied Phycology, 34, 2449–2462. https://doi.org/10.1007/s10811-022-02797-w
  • Ghosh, S., Bheri, M., Bisht, D., & Pandey, G. K. (2022). Calcium signaling and transport machinery: Potential for development of stress tolerance in plants. Current Plant Biology, 29, Article 100235. https://doi.org/10.1016/j.cpb.2022.100235
  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59, 309–314. https://doi.org/10.1104/pp.59.2.309
  • Gorain, P. C., Bagchi, S. K., & Mallick, N. (2013). Effects of calcium, magnesium and sodium chloride in enhancing lipid accumulation in two green microalgae. Environmental Technology, 34, 1887–1894. https://doi.org/10.1080/09593330.2013.812668
  • Guan, W., Zhao, H., Lu, X., Wang, C., Yang, M., & Bai, F. (2011). Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography–mass spectrometry. Journal of Chromatography A, 1218, 8289–8293. https://doi.org/10.1016/j.chroma.2011.09.043
  • Han, P., Li, J., Zhong, H., Xie, J., Zhang, P., Lu, Q., Li, J., Xu, P., Chen, P., Leng, L., & Zhou, W. (2021). Anti-oxidation properties and therapeutic potentials of Spirulina. Algal Research, 55, 102240. https://doi.org/10.1016/j.algal.2021.102240
  • Hanifzadeh, M., Garcia, E. C., & Viamajala, S. (2018). Production of lipid and carbohydrate from microalgae without compromising biomass productivities: Role of Ca and Mg. Renewable Energy, 127, 989–997. https://doi.org/10.1016/j.renene.2018.05.012
  • Hans, K. B., & Jana, T. (2018). Micronutrients in the life cycle: Requirements and sufficient supply. NFS Journal, 11, 1–11. https://doi.org/10.1016/j.nfs.2018.03.001
  • Havaux, M. (2014). Carotenoid oxidation products as stress signals in plants. The Plant Journal, 79, 597–606. https://doi.org/10.1111/tpj.12386
  • He, Y., Gao, J., Wang, T., Liu, C., & Luo, R. (2020). The association between prenatal micronutrient supplementation and early development of children under age two: Evidence from rural Guizhou, China. Children and Youth Services Review, 112, Article 104929. https://doi.org/10.1016/j.childyouth.2020.104929
  • Hochmal, A. K., Schulze, S., Trompelt, K., & Hippler, M. (2015). Calcium-dependent regulation of photosynthesis. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1847, 993–1003. https://doi.org/10.1016/j.bbabio.2015.02.010
  • Hosseini, S. A., Réthoré, E., Pluchon, S., Ali, N., Billiot, B., & Yvin, J.-C. (2019). Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. International Journal of Molecular Sciences, 20, Article 3777. https://doi.org/10.3390/ijms20153777
  • Katiyar, R., & Arora, A. (2020). Health promoting functional lipids from microalgae pool: A review. Algal Research, 46, Article 101800. https://doi.org/10.1016/j.algal.2020.101800
  • Larrosa, A. P. Q., Camara, Á. S., Pohndorf, R. S., da Rocha, S. F., & Pinto, L. A. D. A. (2018). Physicochemical, biochemical, and thermal properties of Arthrospira (Spirulina) biomass dried in spouted bed at different conditions. Journal of Applied Phycology, 30, 1019–1029. https://doi.org/10.1007/s10811-017-1265-5
  • Leganés, F., Sanchez-Maeso, E., & Fernández-Valiente, E. (1987). Effect of indoleacetic acid on growth and dinitrogen fixation in cyanobacteria. Plant and Cell Physiology, 28, 529–533. https://doi.org/10.1093/oxfordjournals.pcp.a077324
  • Leong, Y. K., & Chang, J.-S. (2020). Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresource Technology, 303, 122886. https://doi.org/10.1016/j.biortech.2020.122886
  • Li, Z. Y., Guo, S. Y., & Li, L. (2003). Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresource Technology, 89, 171–176. https://doi.org/10.1016/S0960-8524(03)00041-5
  • Liu, S., & Chacko, S. A. (2013). Dietary Mg intake and biomarkers of inflammation and endothelial dysfunction. Magnesium in Human Health and Disease, 35–50. https://doi.org/10.1007/978-1-62703-044-1_2
  • Luo, S., Luo, T., Peng, P., Li, Y., & Li, X. (2016). Disturbance of chlorophyll biosynthesis at Mg branch affects the chloroplast ROS homeostasis and Ca2+ signaling in Pisum sativum. Plant Cell, Tissue and Organ Culture (PCTOC), 127, 729–737. https://doi.org/10.1007/s11240-016-1008-3
  • Ma, Y., Wang, P., Gu, Z., Tao, Y., Shen, C., Zhou, Y., Han, Y., & Yang, R. (2019). Ca2+ involved in GABA signal transduction for phenolics accumulation in germinated hulless barley under NaCl stress. Food Chemistry: X, 2, 100023. https://doi.org/10.1016/j.fochx.2019.100023
  • Mane, P., & Bhosle, A. (2012). Bioremoval of some metals by living algae Spirogyra sp. and Spirulina sp. from aqueous solution. International Journal of Environmental Research, 6, 571–576. https://doi.org/10.22059/ijer.2012.527
  • Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74, 1–16. https://doi.org/10.1007/s11418-019-01364-x
  • Marker, A. (1972). The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshwater Biology, 2, 361–385. https://doi.org/10.1111/j.1365-2427.1972.tb00377.x
  • Masuda, K., & Chitundu, M. (2019). Multiple micronutrient supplementation using spirulina platensis and infant growth, morbidity, and motor development: Evidence from a randomized trial in Zambia. PLOS ONE, 14, e0211693. https://doi.org/10.1371/journal.pone.0211693
  • Matamoros, M. A., Dalton, D. A., Ramos, J., Clemente, M. R., Rubio, M. C., & Becana, M. (2003). Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis. Plant Physiology, 133, 499–509. https://doi.org/10.1104/pp.103.025619
  • Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15.
  • Mishra, V. K., Bacheti, R., & Husen, A. (2011). Medicinal uses of chlorophyll: A critical overview. Chlorophyll: Structure, Function and Medicinal Uses, 177–196.
  • Molnar, S., Kiss, A., Virág, D., & Forgó, P. (2013). Comparative studies on accumulation of selected microelements by Spirulina platensis and Chlorella vulgaris with the prospects of functional food development. Journal of Chemical Engineering & Process Technology, 4. http://dx.doi.org/10.4172/2157-7048.1000172
  • Muhid, F., Nawi, W., Kader, A. J. A., Yusoff, W. M. W., & Hamid, A. A. (2008). Effects of metal ion concentrations on lipid and gamma linolenic acid production by Cunninghamella sp. 2A1. Online Journal of Biological Sciences, 8, 62–67. https://doi.org/10.3844/ojbsci.2008.62.67
  • Nielsen, F. H. (2015). Importance of plant sources of magnesium for human health. Crop and Pasture Science, 66, 1259–1264. https://doi.org/10.1071/CP15072
  • Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2, 270–278. https://doi.org/10.4161/oxim.2.5.9498
  • Phillips, A. A. M., Zlotkin, S. H., Baxter, J.-A. B., Martinuzzi, F., Kadria, T., & Roth, D. E. (2014). Design and development of a combined calcium—iron—folic acid prenatal supplement to support implementation of the New World Health Organization recommendations for calcium supplementation during pregnancy. Food and Nutrition Bulletin, 35, 221–229. https://doi.org/10.1177/156482651403500209
  • Pritwani, R., & Mathur, P. (2015). Strategies to combat micronutrient deficiencies: A review. International Journal of Health Sciences and Research, 5, 362–373.
  • Ruiz, J. M., Rivero, R. M., Lopez-Cantarero, I., & Romero, L. (2003). Role of Ca2+ in the metabolism of phenolic compounds in tobacco leaves (Nicotiana tabacum L.). Plant Growth Regulation, 41, 173–177. https://doi.org/10.1023/A:1027358423187
  • Shi, J., Wu, Z., & Song, L. R. (2013). Physiological and molecular responses to calcium supplementation in Microcystis aeruginosa (Cyanobacteria). New Zealand Journal of Marine & Freshwater Research, 47, 51–61. https://doi.org/10.1080/00288330.2012.741067
  • Souza, C. O., Teixeira, A. A., Lima, E. A., Batatinha, H. A., Gomes, L. M., Carvalho-Silva, M., Mota, I. T., Streck, E. L., Hirabara, S. M., & Neto, J. C. R. (2014). Palmitoleic acid (N-7) attenuates the immunometabolic disturbances caused by a high-fat diet independently of PPARα. Mediators of Inflammation, 2014, 1–12. https://doi.org/10.1155/2014/582197
  • Suliburska, J., Szulińska, M., Tinkov, A., & Bogdański, P. (2016). Effect of Spirulina maxima supplementation on calcium, magnesium, iron, and zinc status in obese patients with treated hypertension. Biological Trace Element Research, 173, 1–6. https://doi.org/10.1007/s12011-016-0623-5
  • Trabelsi, N., Megdiche, W., Ksouri, R., Falleh, H., Oueslati, S., Soumaya, B., Hajlaoui, H., & Abdelly, C. (2010). Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT-Food Science and Technology, 43, 632–639. https://doi.org/10.1016/j.lwt.2009.11.003
  • Trumbo, P., Yates, A. A., Schlicker, S., & Poos, M. (2001). Dietary reference intakes. Journal of the American Dietetic Association, 101, 294. https://doi.org/10.1016/S0002-8223(01)00078-5
  • Yan-Feng, X., Ling, L., Zhao-Pu, L., Mehta, S., & Geng-Mao, Z. (2008). Protective role of Ca against NaCl toxicity in Jerusalem artichoke by up-regulation of antioxidant enzymes. Pedosphere, 18, 766–774. https://doi.org/10.1016/S1002-0160(08)60072-7
  • Zarrouk, C. (1966). Contribution a l’etude d’une cyanobacterie: Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. University of Paris.
  • Zheng, J., & Gao, Y. (2009). A novel method to bioaccumulate calcium in Spirulina. In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (pp. 1–4). IEEE.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.