70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Daily variations on photosynthesis, pigmentation and photoprotection of Plocamium cartilagineum (Plocamiaceae, Rhodophyta)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 30 Jun 2023, Accepted 25 May 2024, Published online: 21 Jun 2024

REFERENCES

  • Abdala-Díaz, R. T., Cabello-Pasini, A., Pérez-Rodríguez, E., Conde Álvarez, R. M., & Figueroa, F. L. (2006). Daily and seasonal variations of optimum quantum yield and phenolic compounds in Cystoseira tamariscifolia (Phaeophyta). Marine Biology, 148, 459–465. https://doi.org/10.1007/s00227-005-0102-6
  • Álvarez-Gómez, F., Korbee, N., & Figueroa, F. L. (2019). Effects of UV radiation on photosynthesis, antioxidant capacity and the accumulation of bioactive compounds in Gracilariopsis longissima, Hydropuntia cornea and Halopithys incurva (Rhodophyta). Journal of Phycology, 55, 1258–1273. https://doi.org/10.1111/jpy.12899
  • Barceló-Villalobos, M., Figueroa, F. L., Korbee, N., Álvarez-Gómez, F., & Abreu, M. H. (2017). Production of mycosporine-like amino acids from Gracilaria vermiculophylla (Rhodophyta) cultured through one year in an integrated multi-trophic aquaculture (IMTA) system. Marine Biotechnology, 19, 246–254. https://doi.org/10.1007/s10126-017-9746-8
  • Betancor, S., Domínguez, B., Tuya, F., Figueroa, F. L., & Haroun, R. (2015). Photosynthetic performance and photoprotection of Cystoseira humilis (Phaeophyceae) and Digenea simplex (Rhodophyceae) in an intertidal rock pool. Aquatic Botany, 121, 16–25. https://doi.org/10.1016/j.aquabot.2014.10.008
  • Bijlsma, R., & Loeschcke, V. (2005). Environmental stress, adaptation and evolution: An overview. Journal of Evolutionary Biology, 18, 744–749. https://doi.org/10.1111/j.1420-9101.2005.00962.x
  • Bonomi-Barufi, J., Korbee, N., Oliveira, M. C., & Figueroa, F. L. (2011). Effects of N supply on the accumulation of photosynthetic pigments and photoprotectors in Gracilaria tenuistipitata (Rhodophyta) cultured under UV radiation. Journal of Applied Phycology 23, 457–466. https://doi.org/10.1007/s10811-010-9603-x
  • Bonomi Barufi, J., Teresa Mata, M., Cabral Oliveira, M., Figueroa, F. L., Teresa Mata, A., & Figueroa, E. L. (2012). Nitrate reduces the negative effect of UV radiation on photosynthesis and pigmentation in Gracilaria tenuistipitata (Rhodophyta): The photoprotection role of mycosporine-like amino acids. Phycologia, 51, 636–648. https://doi.org/10.2216/10.77.1
  • Bottalico, A., Alongi, G., & Perrone, C. (2016). Macroalgal diversity of Santa Cesarea-Castro (Salento Peninsula, Southeastern Italy). Anales del Jardín Botánico de Madrid, 73, Article e042. https://doi.org/10.3989/ajbm.2412
  • Conde-Álvarez, R. M., Pérez-Rodríguez, E., Altamirano, M., Nieto, J. M., Abdala, R., Figueroa, F. L., & Flores-Moya, A. (2002). Photosynthetic performance and pigment content in the aquatic liverwort Riella helicophylla under natural solar irradiance and solar irradiance without ultraviolet light. Aquatic Botany, 73, 47–61. https://doi.org/10.1016/S0304-3770(02)00007-4
  • Davison, I. R. (1991). Environmental effects on algal photosynthesis. Journal of Phycology, 27, 2–8. https://doi.org/10.1111/j.0022-3646.1991.00002.x
  • De La Coba, F., Aguilera, J., Figueroa, F. L., De Gálvez, M. V., & Herrera, E. (2009). Antioxidant activity of mycosporine-like amino acids isolated from three red macroalgae and one marine lichen. Journal of Applied Phycology, 21, 161–169. https://doi.org/10.1007/s10811-008-9345-1
  • Eilers, P. H. C., & Peeters, J. C. H. (1988). A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling, 42, 199–215. https://doi.org/10.1016/0304-3800(88)90057-9
  • Figueroa, F. L., Salles, S., Aguileral, J., Jimenez, C., Mercadol, J., Vinegla, B., Flores-Moya, A., & Altamirano, M. (1997). Effects of solar radiation on photoinhibition and pigmentation in the red alga Porphyra leucosticta. Marine Ecology Progress Series, 151, 81–90. https://doi.org/10.3354/meps151081
  • Figueroa, F. L., & Gómez, I. (2001). Photosynthetic acclimation to solar UV radiation of marine red algae from the warm-temperate coast of southern Spain: A review. Journal of Applied Phycology, 13, 235–248. https://doi.org/10.1023/A:1011126007656
  • Figueroa F. L., Jiménez, C., Viñegla, B., Pérez-Rodríguez, E., Aguilera, J., Flores-Moya, A., Altamirano, M., Lebert, M., & Hader, D. P. (2002). Effects of solar UV radiation on photosynthesis of the marine angiosperm posidonia oceanica from southern Spain. Marine Ecology Progress Series, 230, 59–70.
  • Figueroa, F. L., Escassi, L., Pérez-Rodríguez, E., Korbee, N., Giles, A. D., & Johnsen, G. (2003). Effects of short-term irradiation on photoinhibition and accumulation of mycosporine-like amino acids in sun and shade species of the red algal genus Porphyra. Journal of Photochemistry & Photobiology, B: Biology, 69, 21–30. https://doi.org/10.1016/S1011-1344(02)00388-3
  • Figueroa, F. L., Conde-Álvarez, R., & Gómez, I. (2003). Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynthesis Research, 75, 259–275. https://doi.org/10.1023/A:1023936313544
  • Figueroa, F. L., Bueno, A., Korbee, N., Santos, R., Mata, L., & Schuenhoff, A. (2008). Accumulation of mycosporine-like amino acids in Asparagopsis armata grown in tanks with fishpond effluents of gilthead sea bream, Sparus aurata. Journal of the World Aquaculture Society, 39, 692–699. https://doi.org/10.1111/j.1749-7345.2008.00199.x
  • Figueroa, F. L., Martínez, B., Israel, A., Neori, A., Malta, E. J., Ang, P., Inken, S., Marquardt, R., Rachamim, T., Arazi, U., Frenk, S., & Korbee, N. (2009). Acclimation of Red Sea macroalgae to solar radiation: Photosynthesis and thallus absorptance. Aquatic Biology, 7, 159–172. https://doi.org/10.3354/ab00186
  • Figueroa, F. L., Israel, A., Viñegla, A., Altamirano, B., Malta, E. J., Put, A., Inken, S., Marquardt, R., Abdala, R., Korbee, N. (2010). Effect of nutrient supply on photosynthesis and pigmentation to short-term stress (UV radiation) in Gracilaria conferta (Rhodophyta). Marine Pollution Bulletin, 60, 1768–1778. https://doi.org/10.1016/j.marpolbul.2010.06.009
  • Figueroa, F. L., Israel, A., Neori, A., Martínez, B., Malta, E. J., Put, A., Inken, S. et al. (2010). Effect of nutrient supply on photosynthesis and pigmentation to short-term stress (UV radiation) in Gracilaria conferta (Rhodophyta). Marine Pollution Bulletin, 60, 1768–1778. https://doi.org/10.1016/j.marpolbul.2010.06.009
  • Flores-Moya, A., Hanelt, D., Figueroa, F. L., Altamirano, M., Viñegla, B., & Salles, S. (1999). Involvement of solar UV-B radiation in recovery of inhibited photosynthesis in the brown alga Dictyota dichotoma (Hudson) Lamouroux. Journal of Photochemistry & Photobiology, B: Biology, 49, 129–135. https://doi.org/10.1016/S1011-1344(99)00046-9
  • Foyer, C. H., Neukermans, J., Queval, G., Noctor, G., & Harbinson, J. (2012). Photosynthetic control of electron transport and the regulation of gene expression. Journal of Experimental Botany, 63, 1637–1661. https://doi.org/10.1093/jxb/ers013
  • Freitas, M. V., Inácio, L. G., Martins, M., Afonso, C., Pereira, L., & Mouga, T. (2022). Primary composition and pigments of 11 red seaweed species from the center of Portugal. Journal of Marine Science and Engineering, 10, Article 1168. https://doi.org/10.3390/jmse10091168
  • Genty, B., Briantais, J. M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica Et Biophysica Acta - General Subjects, 990, 87–92. https://doi.org/10.1016/S0304-4165(89)80016-9
  • Gómez, I., Pérez-Rodríguez, E., Viñegla, B., Figueroa, F. L., & Karsten, U. (1998). Effects of solar radiation on photosynthesis, UV-absorbing compounds and enzyme activities of the green alga Dasycladus vermicularis from Southern Spain. Journal of Photochemistry & Photobiology B: Biology, 47, 46–57. https://doi.org/10.1016/S1011-1344(98)00199-7
  • Guiry M. D., & Guiry G. M. (2022) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Retrieved March 2022, from https://www.algaebase.org.
  • Hader, D. P., Lebert, M., Mercado, J., Aguilera Salles, J. S., Jim, C., Jim, C., Figueroa, F. L., & Figueroa, F. L. (1996). Photosynthetic oxygen production and PAM fluorescence in the brown algaPadina pavonica measured in the field under solar radiation. Marine Biology, 127, 61–66. https://doi.org/10.1007/BF00993644
  • Häder, D. P., & Figueroa, F. L. (1997). Photoecophysiology of marine macroalgae. Photochemistry and Photobiology, 66, 1–14. https://doi.org/10.1111/j.1751-1097.1997.tb03132.x
  • Hoyer, K., Karsten, U., Sawall, T., & Wiencke, C. (2001). Photoprotective substances in Antarctic macroalgae and their variation with respect to depth distribution, different tissues and developmental stages. Marine Ecology Progress Series, 211, 117–129. https://doi.org/10.3354/meps211117
  • Huovinen, P., Matos, J., Sousa Pinto, I., & Figueroa, F. L. (2006). The role of ammonium in photoprotection against high irradiance in the red alga Grateloupia lanceolata. Aquatic Botany, 84, 308–316. https://doi.org/10.1016/j.aquabot.2005.12.002
  • Jiménez, C., Figueroa, F. L., Salles, S., Aguilera, J., Mercado, J., Viñegla, B., Flores-Moya, A., Lebert, M., & Häder, D.-P. (1998). Effects of solar radiation on photosynthesis and photoinhibition in red macrophytes from an intertidal system of Southern Spain. Botanica Marina, 41, 329–338. https://doi.org/10.1515/botm.1998.41.1-6.329
  • Johnsen, G., & Sakshaug, E. (2007). Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse-amplitude-modulated and fast-repetition-rate fluorometry. Journal of Phycology, 43, 1236–1251. https://doi.org/10.1111/j.1529-8817.2007.00422.x
  • Karsten, U., & Wiencke, C. (1999). Factors controlling the formation of UV-absorbing mycosporine-like amino acids in the marine red alga Palmaria palmata from Spitsbergen (Norway). Journal of Plant Physiology, 155, 407–415. https://doi.org/10.1016/S0176-1617(99)80124-2
  • Korbee, N., Abdala-Díaz, R. T., Figueroa, F. L., & Helbling, E. W. (2004). Ammonium and UV radiation stimulate the accumulation of mycosporine-like amino acids in Porphyra columbina (Rhodophyta) from Patagonia, Argentina. Journal of Phycology, 40, 248–259. https://doi.org/10.1046/j.1529-8817.2004.03013.x
  • Kromkamp, J. C., & Forster, R. M. (2003). The use of variable fluorescence measurements in aquatic ecosystems: Differences between multiple and single turnover measuring protocols and suggested terminology. European Journal of Phycology, 38, 103–112. https://doi.org/10.1080/0967026031000094094
  • López‐Figueroa, F. (1991). Red, green and blue light photoreceptors controlling chlorophyll a, biliprotein and total protein synthesis in the red alga Chondrus crispus. British Phycological Journal, 26, 383–393. https://doi.org/10.1080/00071619100650351
  • López‐Figueroa, F. (1992). Diurnal variation in pigment content in Porphyra laciniata and Chondrus crispus and its relation to the diurnal changes of underwater light quality and quantity. Marine Ecology, 13, 285–305. https://doi.org/10.1111/j.1439-0485.1992.tb00356.x
  • López-Figueroa, F., Santos, R., Conde-Álvarez, R., Mata, L., Gómez-Pinchetti, J. L., Matos, J., & Huovinen, P. (2006). The use of chlorophyll fluorescence for monitoring photosynthetic condition of two tank-cultivated red macroalgae using fishpond effluents. Botanica Marina, 49, 275–282. https://doi.org/10.1515/BOT.2006.035
  • Lüder U. H., Knoetzel J., & Wiencke C. (2001). Acclimation of photosynthesis and pigments to seasonally changing light conditions in the endemic Antarctic red macroalga palmaria decipiens. Polar Biology, 24, 598–603. https://doi.org/10.1007/s003000100260.
  • Migné, A., Delebecq, G., Davoult, D., Spilmont, N., Menu, D., & Gévaert, F. (2015). Photosynthetic activity and productivity of intertidal macroalgae: In situ measurements, from thallus to community scale. Aquatic Botany, 123, 6–12. https://doi.org/10.1016/j.aquabot.2015.01.005
  • Moreira, B. R., Vega, J., Sisa, A. D. A., Bernal, J. S. B., Abdala-Díaz, R. T., Maraschin, M., Figueroa, F. L., & Bonomi-Barufi, J. (2022). Antioxidant and anti-photoaging properties of red marine macroalgae: Screening of bioactive molecules for cosmeceutical applications. Algal Research, 68, Article 102893. https://doi.org/10.1016/j.algal.2022.102893
  • Navarro, N. P., Figueroa, F. L., Korbee, N., Mansilla, A., Matsuhiro, B., Barahona, T., & Plastino, E. M. (2014). The effects of NO3 supply on Mazzaella laminarioides (Rhodophyta, Gigartinales) from Southern Chile. Photochemistry and Photobiology, 90, 1299–1307. https://doi.org/10.1111/php.12344
  • Navarro, N. P., Mansilla, A., Figueroa, F. L., Korbee, N., Jofre, J., & Plastino, E. (2014). Short-term effects of solar UV radiation and NO3- supply on the accumulation of mycosporine-like amino acids in Pyropia columbina (Bangiales, Rhodophyta) under spring ozone depletion in the sub-Antarctic region, Chile. Botanica Marina, 57, 9–20. https://doi.org/10.1515/bot-2013-0090
  • Navarro, N. P., Korbee, N., Jofre, J., & Figueroa, F. (2021). Short-term variations of mycosporine-like amino acids in the carrageenan-producing red macroalga Mazzaella laminarioides (Gigartinales, Rhodophyta) are related to nitrate availability. Journal of Applied Phycology, 33, 2537–2546. https://doi.org/10.1007/s10811-021-02452-w
  • Ngoennet, S., Nishikawa, Y., Hibino, T., Waditee-Sirisattha, R., & Kageyama, H. (2018). A method for the isolation and characterization of mycosporine-like amino acids from cyanobacteria. Methods and Protocols, 1, 1–15. https://doi.org/10.3390/mps1040046
  • Peinado, N. K., Abdala-Díaz, R. T., Figueroa, F. L., & Helbling, E. W. (2004). Ammonium and UV radiation stimulate the accumulation of mycosporine-like amino acids in Porphyra columbina (Rhodophyta) from Patagonia, Argentina. Journal of Phycology, 40, 248–259. https://doi.org/10.1046/j.1529-8817.2004.03013.x/
  • Quintano, E., Díez, I., Muguerza, N., Figueroa, F. L., & Gorostiaga, J. M. (2018). Depth influence on biochemical performance and thallus size of the red alga Gelidium corneum. Marine Ecology, 39, Article e12478. https://doi.org/10.1111/maec.12478
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Ritchie, R. J. (2008). Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica, 46, 115–126. https://doi.org/10.1007/s11099-008-0019-7
  • Robert, S., Bailleul, B., Berne, N., Frank, F., & Cardol, P. (2014). PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp. symbiotic dinoflagellates of cnidarians. New Phytologist Foundation, 204, 81–91. https://doi.org/10.1111/nph.12903
  • Sampath-Wiley, P., & Neefus, C. D. (2007). An improved method for estimating R-phycoerythrin and R-phycocyanin contents from crude aqueous extracts of Porphyra (Bangiales, Rhodophyta). Journal of Applied Phycology, 19, 123–129. https://doi.org/10.1007/s10811-006-9118-7
  • Simon, C., Gall, E. A., Levavasseur, G., & Deslandes, E. (2005). Effects of short-term variations of salinity and temperature on the photosynthetic response of the red alga Grateloupia doryphora from Brittany (France). Botanica Marina, 42, 437–440. https://doi.org/10.1515/BOT.1999.050
  • Taira, H., Aoki, S., Yamanoha, B., & Taguchi, S. (2004). Daily variation in cellular content of UV-absorbing compounds mycosporine-like amino acids in the marine dinoflagellate Scrippsiella sweeneyae. Journal of Photochemistry & Photobiology, B: Biology, 75, 145–155. https://doi.org/10.1016/S1011-1344(04)00079-X
  • Talarico, L., & Maranzana, G. (2000). Light and adaptive responses in red macroalgae: An overview. Journal of Photochemistry and Photobiology B: Biology, 56, 1–11. https://doi.org/10.1016/S1011-1344(00)00046-4
  • Torres, P., Santos, J. P., Chow, F., Pena Ferreira, M. J., & Dos Santos, D. Y. A. C. (2018). Comparative analysis of in vitro antioxidant capacities of mycosporine-like amino acids (MAAs). Algal Research, 34, 57–67. https://doi.org/10.1016/j.algal.2018.07.007
  • Vanlerberghe, G. C., Dahal, K., Alber, N. A., & Chadee, A. (2020). Photosynthesis, respiration and growth: A carbon and energy balancing act for alternative oxidase. Mitochondrion, 52, 197–211. https://doi.org/10.1016/j.mito.2020.04.001
  • Vega, J., Schneider, G., Moreira, B. R., Herrera, C., Bonomi-Barufi, J., & Figueroa, F. L. (2021). Mycosporine-like amino acids from red macroalgae: UV-photoprotectors with potential cosmeceutical applications. Applied Science, 11, Article 5112. https://doi.org/10.3390/app11115112
  • Wada, N., Sakamoto, T., & Matsugo, S. (2013). Multiple roles of photosynthetic and sunscreen pigments in cyanobacteria focusing on the oxidative stress. Metabolites, 3, 463. https://doi.org/10.3390/metabo3020463
  • Wada, N., Sakamoto, T., & Matsugo, S. (2015). Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants, 4, 603–646. https://doi.org/10.3390/antiox4030603
  • Wu, Q., Krauss, S., & Vetter, W. (2020). Occurrence and fate studies (sunlight exposure and stable carbon isotope analysis) of the halogenated natural product MHC-1 and its producer Plocamium cartilagineum. Science of the Total Environment, 736, Article 139680. https://doi.org/10.1016/j.scitotenv.2020.139680

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.