192
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Electrochemical and spectroscopic characterisations of cation exchange membrane equilibrated in acid and salt solutions: application as separator in microbial fuel cell

, , , &
Pages 717-731 | Received 14 Jan 2015, Accepted 20 Mar 2015, Published online: 20 Apr 2015

References

  • Chaabane L, Bulvestre G, Innocent C, Pourcelly G, Auclair B. Physico-chemical characterization of ion-exchange membranes in water-methanol mixtures. Eur Polym J. 2006;42:1403–1416. DOI:10.1016/j.eurpolymj.2005.12.019.
  • Lteif R, Dammak L, Larchet C, Auclair B. Conductivite électrique membranaire: étude de l’effet de la concentration de la nature de l’électrolyte et de la structure membranaire. Eur Polym J. 1999;35:1187–1195.
  • Cercado Quezada B. Traitement de déchets issus de l’industrie agro-alimentaire par pile à combustible microbienne [ PhD]. Toulouse: Université de Toulouse France; 2009.
  • Kreuer KD, Membr J. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. Sci. 2001;185:32.
  • Vishnyakov A, Neimark AV. Molecular simulation study of Nafion membrane solvation in water and methanol. J Phys ChemB. 2000;104:4471–4478. DOI:10.1021/jp993625w.
  • Kyung SO, Dong HK, Seungho P. Behaviour of water molecules in Nafion 117 for polymer electrolyte membrane fuel cell by molecular dynamics simulation. Mol Simul. 2008;34:1237–1244.
  • Eikerling M, Kharkats Y, Kornyshev AA, Volfkovich YM. Phenomenological theory of electro-osmotic effect and water management in polymer electrolyte proton-conducting membranes. J Electrochem Soc. 1998;145:2684.
  • Hsu J, Lu J, Kuo Y, Tseng S. Electrical interaction between two cylinders with an ion-penetrable charged membrane in an oil/water interface. Colloids Surf B: Biointerfaces. 2001;21:265–272. DOI:10.1016/S0927-7765(00)00202-2.
  • Mauritz K, Moore RB. State of understanding of Nafion. Chem Rev oct. 2004;104:4535–4586. DOI:10.1021/cr0207123.
  • Zawodzlnski TA, Springer TE, Urlbe F, Gottesfeld S. Characterization of polymer electrolytes for fuel cell applications. Solid State Ionics. 1993;60:199–211. DOI:10.1016/0167-2738(93)90295-E.
  • Damay F, Klein LC. Transport properties of Nafion composite membranes for proton-exchange membranes fuel cells. Solid State Ionics. 2003 Sep;162-163:261–267. DOI:10.1016/S0167-2738(03)00238-8.
  • Gebel G. Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer. 2000 Jul;41:5829–5838. DOI:10.1016/S0032-3861(99)00770-3.
  • Gavacha C, Pamboutzogloua G, Nedyalkovb M, Pourcellya G. AC impedance investigation of the kinetics of ion transport in Nafion® perfluorosulfonic membranes. J Membr Sci July. 1989;45:37–53. DOI:10.1016/S0376-7388(00)80843-1.
  • Beattie PD, Orfino FP, Vi B, Zychowska K, Ding J, Chuy C, Schmeisser J, Holdcroft SJ. Electroanal. Chem Apr. 2001;503:45–56.
  • Chuy C, Basura VI, Simon E, Holdcroft S, Horsfall J, Lovell KV. Ionic conductivity of proton exchange membranes. J Electrochem Soc. 2000;147:4453.
  • Choi P, Jalani NH, Datta R. Thermodynamics and proton transport in Nafion II. Proton diffusion mechanisms and conductivity. J Electrochem Soc. 2005;152:123.
  • Liu D, Hickner MA, Case SW, Lesko JJ. Relaxation of proton conductivity and stress in proton exchange membranes under strain. J Eng Mater Technol. 2006;128:503.
  • Okada T, Xie G, Gorseth O, Kjelstrup S, Nakamura N, Arimura T. Ion and water transport characteristics of Nafion membranes as electrolytes. Electrochim Acta. 1998;43:3741–3747. DOI:10.1016/S0013-4686(98)00132-7.
  • Lage LG, Delgado PG, Kawano Y. Vibrational and thermal characterization of Nafion® membranes substituted by alkaline earth cations. Eur Polym J. 2004;40:1309–1316. DOI:10.1016/j.eurpolymj.2004.02.021.
  • Hamani H, Bouamrane R, Kameche M, Innocent C, Derriche Z. Transport number and current voltage of a cation exchange membrane equilibrated in aqueous and organic solutions. Phys Chem Liq. Taylor and Francis Publisher. 2013 May; 51:265–280. DOI:10.1080/00319104.2010.527840.
  • Rubinstein I. Electroconvection at an electrically inhomogeneous permselective interface. Phys Fluids A. 1991;3:2301.
  • Mafe S, Manzanares JA, Ramirez P. Modelling of surface vs. bulk ionic conductivity in fixed charge membranes. Phys Chem. 2003;5:376–383.
  • Xu F, Innocent C, Bonnet B, Jones DJ, Rozière J. Chemical modification of perfluorosulfonated membranes with pyrrole for fuel cell application: preparation, characterisation and methanol transport. Fuel Cells. 2005;5:398–405. DOI:10.1002/(ISSN)1615-6854.
  • Sistat P. Apports des techniques électriques de relaxation à la compréhension des phénomènes de transport de matière dans un système membrane ionique-solution [ PhD]. Montpellier: université Montpellier 2; 1997.
  • Choi J-H, Lee H-J, Moon S-H. Effects of electrolytes on the transport phenomena in a cation-exchange membrane. J Colloid Interface Sci. 2001;238:188–195. DOI:10.1006/jcis.2001.7510.
  • Barragán VM, Ruíz-Bauzá C. Current–voltage curves for a cation-exchange membrane in methanol–water electrolyte solutions. J Colloid Interface Sci. 2002;247:138–148. DOI:10.1006/jcis.2001.8065.
  • Chapotot A. Membranes échangeuses de cations à haute permsélectivité au proton [ Phd]. Montpellier: université Montpellier II; 1994.
  • Servage R. Etude du comportement des membranes échangeuses d’ions du type polystyrene-sulfonate en presence de différents cations [ PhD]. Grenoble: universitéscientifique et médicale de Grenoble; 1973.
  • Izutsu K. Electrochemistry in nonaqueous solutions. 2nd ed. [Revised and Enlarged Edition]. Weinheim: Wiley-VCH Verlag GmbH& Co.KGaA; 2009, Reprint (2011).
  • Berdous D. Optimisation des parameters de transfer et etude des mécanismes de transport lors de dialyses hybrids [ PhD]. algerie: universitéde science et de la technologie mohamed bodiaf USTHB-Algeria; 2003.
  • Austin D, Kumar RV. Ionic conductivity in hydrogels for contact lens applications. Ionics. 2005;11:262–268. DOI:10.1007/BF02430387.
  • Feina X. Caractérisation, application et modification de membranes échangeuses d’ions en milieu hydro-organique et organique [ PhD]. Montpellier: universitéde montpellier 2; 2004.
  • Boulehdid H. Elaboration et caractérisation d’une membrane cationique monosélective par modification chimique d’un film ETFE [ PhD]. Bruxelles: Université libre de Bruxelles; 2008.
  • He Z, Angenent LT. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis. 2006;18:2009–2015. DOI:10.1002/(ISSN)1521-4109.
  • Logan B, Regan J. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006;14:512–518. DOI:10.1016/j.tim.2006.10.003.
  • Cercado Quezada B, Delia M-L, Bergel A. Treatment of dairy wastes with a microbial anode formed from garden compost. J Appl Electrochem. 2010;40:225–232. DOI:10.1007/s10800-009-0001-5.
  • Degrenne N, Allard B, Buret F. Récupération de l’énergie électrique produite par les piles à combustibles microbiennes.[Research Report]. Lyon: CNRS-Université de Lyon; 2011.
  • Li C, Zhang L, Ding L, Ren H, Cui H. Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis. Biosens Bioelectron. 2011;26:4169–4176. DOI:10.1016/j.bios.2011.04.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.