127
Views
15
CrossRef citations to date
0
Altmetric
Articles

Molecular interaction study through experimental and theoretical volumetric, transport and refractive properties of N-ethylaniline with aryl and alkyl ethers at several temperatures

, , & ORCID Icon
Pages 223-244 | Received 17 May 2015, Accepted 09 Jul 2015, Published online: 17 Aug 2015

References

  • Malek NI, Ijardar SP, Master ZR, et al. Temperature dependence of densities, speeds of sound, and derived properties of cyclohexylamine + cyclohexane or benzene in the temperature range 293.15–323.15 K. Thermochim Acta. 2012;547:106–119. DOI:10.1016/j.tca.2012.08.011.
  • Malek NI, Ijardar SP, Oswal SB. Volumetric and acoustic properties of binary mixtures of cyclohexane + benzene and + benzaldehyde at (293.15–323.15) K.. Thermochim Acta. 2012;539:71–83.
  • Ijardar SP, Malek NI, Oswal SL. Studies on volumetric properties of triethylamine in organic solvents with varying polarity. Indian J Chem. 2011;50A:1709–1718.
  • Oswal SL, Desai JS, Ijardar SP, et al. Studies of viscosities of dilute solutions of alkylamine in non-electrolyte solvents. II. Haloalkanes and other polar solvents. Thermochim Acta. 2005;427:51–60.
  • Pandiyan V, Oswal SL, Malek NI, et al. Thermodynamic and acoustic properties of binary mixtures of ethers. V. Diisopropyl ether or oxolane with 2- or 3-chloroanilines at 303.15, 313.15 and 323.15 K. Thermochim Acta. 2011;524:140–150.
  • Master ZR, Malek NI. Molecular interaction study through experimental and theoretical volumetric, acoustic and refractive properties of binary liquid mixtures at several temperatures 1. N,N-dimethylaniline with aryl, and alkyl ethers. J Mol Liq. 2014;196:120–134. DOI:10.1016/j.molliq.2014.03.027.
  • Lakshmi BJ, Gowrisankar M, Rambabu C, et al. Volumetric, ultrasonic and viscometric studies of binary liquid mixures of N-ethylaniline + chlorobenzene, + bromobeneze, + 1, 2-dichlorobenzene + 1, 3-dichlorobenzene+1, 2, 4-trichlorobenzene at 303.15 and 308.15 K. Korean J Chem Eng Data. 2014;31:881–895. DOI:10.1007/s11814-013-0235-0.
  • Oswal SL, Pandiyan V, Krishnakumar B, et al. Thermodynamic and acoustic properties of binary mixtures of oxolane with aniline and substituted anilines at 303.15, 313.15 and 323.15 K. Thermochim Acta. 2010;507–508:27–34. DOI:10.1016/j.tca.2010.04.025.
  • Pandiyan V, Vasantharani P, Oswal SL, et al. Thermodynamic and acoustic properties of binary mixtures of ethers. 2. Diisopropyl ether with arylamines at (303.15, 313.15, and 323.15) K and application of eras model to aniline mixtures with diisopropyl ether and oxolane. J Chem Eng Data. 2011;56:269–277. DOI:10.1021/je1008262.
  • Gowrisankar M, Sivarambabu S, Venkateswarlu P, et al. Excess volumes, speeds of sound, isentropic compressibilities and viscosities of binary mixtures of N-ethyl aniline with some aromatic ketones at 303.15 K.. Bull Korean Chem Soc. 2012;33:1686–1692. DOI:10.5012/bkcs.2012.33.5.1686.
  • Viswanathan S, Rao MA, Prasad DHL. Densities and viscosities of binary liquid mixtures of anisole or methyl tert-butyl ether with benzene, chlorobenzene, benzonitrile, and nitrobenzene. J Chem Eng Data. 2000;45:764–770. DOI:10.1021/je990288b.
  • Joshi SS, Aminabhavi TM, Shukla SS. Densities and viscosities of binary liquid mixtures of anisole with methanol and benzene. J Chem Eng Data. 1990;35:187–189. DOI:10.1021/je00060a028.
  • Francesconi R, Bigi A, Comelli F. Enthalpies of mixing, densities, and refractive indices for binary mixtures of (anisole or phenetole) + three aryl alcohols at 308.15 K and at atmospheric pressure. J Chem Eng Data. 2005;50:1404–1408. DOI:10.1021/je050085p.
  • Weng W. Viscosities and densities for binary mixtures of anisole with 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol. J Chem Eng Data. 1999;44:63–66. DOI:10.1021/je980104d.
  • Baragi JG, Aralaguppi MI, Aminabhavi TM, et al. Density, viscosity, refractive index, and speed of sound for binary mixtures of anisole with 2-chloroethanol, 1,4-dioxane, tetrachloroethylene, tetrachloroethane, DMF, DMSO, and diethyl oxalate at (298.15, 303.15, and 308.15) K. J Chem Eng Data. 2005;50:910–916. DOI:10.1021/je049610v.
  • Nath J. Speeds of sound and isentropic compressibilities of (anisole + dichloromethane, or 1,2-dichloroethane, or trichloroethene, or tetrachloroethene, or cyclohexane); at T= 303.15 K. J Chem Thermodyn. 1996;28:481–490. DOI:10.1006/jcht.1996.0046.
  • Pal A, Kumar H, Sharma S, et al. Mixing properties for binary liquid mixtures of methyl tert-butyl ether with propylamine and dipropylamine at temperatures from (288.15 to 308.15) K. J Chem Eng Data. 2010;55:1424–1429. DOI:10.1021/je900597n.
  • Montano D, Bolts R, Gmehling J, et al. Calorimetric and acoustic study of binary mixtures containing an isomeric chlorobutane and butyl ethyl ether or methyl tert-butyl ether. J Therm Anal Calorim. In Press. DOI:10.1007/s10973-015-4797-4.
  • Gómez-Marigliano AC, Arce A, Rodil E, et al. Isobaric vapor−liquid equilibria at 101.32 kPa and densities, speeds of sound, and refractive indices at 298.15 K for MTBE or DIPE or TAME + 1-Propanol binary systems. J Chem Eng Data. 2010;55:92–97. DOI:10.1021/je900274n.
  • Domańska U, Żołek-Tryznowska Z. Measurements of the density and viscosity of binary mixtures of (hyper-branched polymer, B-H2004 + 1-butanol, or 1-hexanol, or 1-octanol, or methyl tert-butyl ether). J Chem Thermodyn. 2010;42:651–658. DOI:10.1016/j.jct.2009.12.005.
  • Hoga HE, Tôrres RB. Volumetric and viscometric properties of binary mixtures of {methyl tert-butyl ether (MTBE) + alcohol} at several temperatures and p = 0.1 MPa: experimental results and application of the ERAS model. J Chem Thermodyn. 2011;43:1104–1134. DOI:10.1016/j.jct.2011.02.018.
  • Li D, Qin X, Fang W, et al. Densities, viscosities and refractive indices of binary liquid mixtures of methyl tert-butyl ether or ethyl tert-butyl ether with a hydrocarbon fuel. Exp Therm Fluid Sci. 2013;48:163–168. DOI:10.1016/j.expthermflusci.2013.02.019.
  • Al-Jimaz AS, Al-Kandary JA, Abdul-Latif A-HM. Densities and viscosities for binary mixtures of phenetole with 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol at different temperatures. Fluid Phase Equilib. 2004;218:247–260. DOI:10.1016/j.fluid.2003.12.007.
  • Ottani S, Comelli F, Castellari C. Densities, viscosities, and excess molar enthalpies of propylene carbonate + anisole or + phenetole at (293.15, 303.15, and 313.15) K. J Chem Eng Data. 2001;46:125–129. DOI:10.1021/je000148y.
  • Francesconi R, Comelli F, Castellari C. Excess molar enthalpies of binary mixtures containing phenetole+α-pinene or β-pinene in the range (288.15–313.15) K, and at atmospheric pressure: application of the extended cell model of Prigogine. Thermochim Acta. 2000;363:115–120. DOI:10.1016/S0040-6031(00)00605-5.
  • Francesconi R, Comelli F, Castellari C. Excess molar enthalpies and excess molar volumes of binary mixtures containing dialkyl carbonates + anisole or phenetole at (288.15 and 313.15) K. J Chem Eng Data. 2000;45:544–548. DOI:10.1021/je9903395.
  • Ubbelohde L. The principle of the suspended level: applications to the measurement of viscosity and other properties of liquids. Ind Eng Chem Anal Edn. 1937;9:85–90. DOI:10.1021/ac50106a015.
  • Concalves FA, Kestin J, Sengers JV. Surface-tension effects in suspended-level capillary viscometers. Int J Thermophys. 1991;12:1013–1028. DOI:10.1007/BF00503516.
  • Riddick JA, Bunger WB, Sakano TK. Organic solvents: physical properties and method of purifications. 4th ed. New York: Wiley-Interscience; 1986.
  • Kendall J, Monroe KP. The viscosity of liquids. II. The viscosity-composition curve for ideal liquid mixtures. J Am Chem Soc. 1917;39:1787–1802. DOI:10.1021/ja02254a001.
  • Bhagvat WV, Mandloi K. J Indian Chem Soc. 1946;23:349.
  • Frenkel YI. Kinematics theory of liquids. London: Oxford University Press; 1949.
  • Arrhenius SA. Dissociation of substances dissolved in water. Z Phys Chem. 1887;1:631–648.
  • Reed TM, Taylor TE. Viscosities of liquid mixtures. J Phys Chem. 1959;63:58–67. DOI:10.1021/j150571a016.
  • Grunberg L, Nissan AH. Mixture law for viscosity. Nature. 1949;164:799–800. DOI:10.1038/164799b0.
  • Tamura M, Kurata M. On the viscosity of binary mixture of liquids. Bull Chem Soc Jpn. 1952;25:32–38. DOI:10.1246/bcsj.25.32.
  • Hind RK, McLaughlin E, Ubbelohde AR. Structure and viscosity of liquids. Camphor + pyrene mixtures. Trans Faraday Soc. 1960;56:328–330. DOI:10.1039/tf9605600328.
  • Katti PK, Chaudhri MM. Viscosities of binary mixtures of benzyl acetate with dioxane, aniline, and cresol. J Chem Eng Data. 1964;9:442–443. DOI:10.1021/je60022a047.
  • Dale TP, Gladstone JH. On the influence of temperature on the refraction of light. Phil Trans R Soc Lond. 1858;148:887–894. DOI:10.1098/rstl.1858.0036.
  • Arago DFJ, Biot JB. Mem Acad Fr. 1806;7:301–385.
  • Heller WJ. Remarks on refractive index mixture rules. J Phys Chem. 1965;69:1123–1129. DOI:10.1021/j100888a006.
  • Weiner O. Berichte. Leipzig. 1910;62:256–262.
  • Oster G. The scattering of light and its applications to chemistry. Chem Rev. 1948;43:319–365. DOI:10.1021/cr60135a005.
  • Baraldi P, Giorgini MG, Manzini D, et al. Density, refractive index, and related properties for 2-Butanone + n-hexane binary mixtures at various temperatures. J Solution Chem. 2002;31:873–893. DOI:10.1023/A:1021463705444.
  • Lorentz HA. The theory of electrons. 2nd ed. Leipzig: Teubner; 1916.
  • Eykman JF. Rec Trav Chim Pays-Bas. 1895;14:887–894.
  • Douheret G, Davis MI, Reis JCR, et al. Isentropic compressibilities—experimental origin and the quest for their rigorous estimation in thermodynamically ideal liquid mixtures. Chem Phys Chem. 2001;2:148–161.
  • Douheret G, Davis MI, Reis JCR, et al. Aggregative processes in aqueous solutions of isomeric 2-butoxyethanols at 298.15 K. Phys Chem Chem Phys. 2002;4:6034–6042. DOI:10.1039/b208598d.
  • Fort RJ, Moore WR. Viscosities of binary liquid mixtures. Trans Faraday Soc. 1966;62:1112. DOI:10.1039/tf9666201112.
  • Ruiz B, Otin S, Gutierrez, Losa C. Excess molar enthalpies at 298.15 K of chlorobenzene+, (chloromethyl)benzene +, and (2-chloroethyl)benzene + an ether. J Chem Thermodyn. 1984;16:25–32. DOI:10.1016/0021-9614(84)90071-5.
  • Nath J, Srivastava AK. Excess volumes for binary liquid mixtures of trichloroethylene with anisole, pyridine, quinoline and cyclohexane at 298.15 and 308.15 K. Fluid Phase Equilib. 1986;28:97–101. DOI:10.1016/0378-3812(86)85071-3.
  • Venkatesu P, ChandraSekhar G, Rao MVP. Ultrasonic studies of N,N-dimethylformamide +cyclohexanone + 1-alkanols at 303.15 K. Phys Chem Liq. 2006;44:287–291. DOI:10.1080/00319100600576718.
  • Pikkarainen L. Densities and viscosities of binary mixtures of N,N-dimethylacetamide with aliphatic alcohols. J Chem Eng Data. 1983;28:344–347. DOI:10.1021/je00033a019.
  • Prigogine I. Molecular theory of solution. Amsterdam: North-Holland Publishing Company; 1957.
  • Flory PJ. Statistical thermodynamics of liquid mixtures. J Am Chem Soc. 1965;87:1833–1838. DOI:10.1021/ja01087a002.
  • Patterson D, Delmas G. Corresponding states theories and liquid models. Disc Faraday Soc. 1970;49:98–105. DOI:10.1039/df9704900098.
  • Van, Tra H, Patterson D. Volumes of mixing and the P * effect: Part I. Hexane isomers with normal and branched hexadecane. J Sol Chem. 1982;11:793–805. DOI:10.1007/BF00650519.
  • Arce A, Rodil E, Soto A. Physical and excess properties for binary mixtures of 1-methyl-3-octylimidazolium tetrafluoroborate, [Omim][BF4], Ionic liquid with different alcohols. J Sol Chem. 2006;35:63–78. DOI:10.1007/s10953-006-8939-y.
  • Najdanovic-Visak V, Esperancu JMSS, Rebelo LPNM, et al. Pressure, isotope, and water co-solvent effects in liquid−liquid equilibria of (Ionic liquid + alcohol) systems. J Phys Chem B. 2003;107:12797–12807. DOI:10.1021/jp034576x.
  • Kumar A, Singh T, Gardas RL, et al. Non-ideal behaviour of a room temperature ionic liquid in an alkoxyethanol or poly ethers at T = (298.15 to 318.15) K. J Chem Thermodyn. 2008;40:32–39. DOI:10.1016/j.jct.2007.06.002.
  • Qi F, Wang H. Application of Prigogine–Flory–Patterson theory to excess molar volume of mixtures of 1-butyl-3-methylimidazolium ionic liquids with N-methyl-2-pyrrolidinone. J Chem Thermodyn. 2009;41:265–272. DOI:10.1016/j.jct.2008.09.003.
  • Oswal SL. Theoretical estimation of isentropic compressibility and speed of sound in binary liquid mixtures from the Prigogine-Flory-Patterson theory. Acoustic Lett. 1990;14:17–23.
  • Oswal SL, Oswal P, Dave JP. Speed of sound and isentropic compressibility of binary mixtures containing alkyl acetate or ethyl alkanoate, or ethyl bromo-alkanoate with hexane. J Mol Liq. 2001;94:203–219. DOI:10.1016/S0167-7322(01)00269-0.
  • Oswal SL, Gardas RL, Phalak RP. Densities, speeds of sound, isentropic compressibilities, refractive indices and viscosities of binary mixtures of tetrahydrofuran with hydrocarbons at 303.15 K. J Mol Liq. 2005;116:109–118. DOI:10.1016/j.molliq.2004.07.081.
  • Oswal SL, Patel SG, Gardas RL, et al. Speeds of sound and isentropic compressibilities of binary mixtures containing trialkylamines with alkanes and mono-alkylamines at 303.15 and 313.15 K. Fluid Phase Equilib. 2004;215:61–70. DOI:10.1016/S0378-3812(03)00362-5.
  • Bich E, Papaioannou D, Heintz A, et al. Excess enthalpy of the system propan-1-ol+MTBE+i-octane. Experimental results and ERAS model calculations. Fluid Phase Equilib. 1999;156:115–135. DOI:10.1016/S0378-3812(99)00024-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.