189
Views
4
CrossRef citations to date
0
Altmetric
Articles

An explicit expression for the static structure factor for a multi-Yukawa fluid: the one-component case

&
Pages 632-646 | Received 21 Sep 2015, Accepted 05 Jan 2016, Published online: 22 Feb 2016

References

  • Hansen JP, McDonald IR. Theory of simple liquids. 3rd ed. Burlington (MA): Academic Press; 2006.
  • Rosenfeld Y. Free energy model for inhomogeneous fluid mixtures: Yukawa-charged hard spheres, general interactions, and plasmas. J Chem Phys. 1993;98(10):8126–8148. DOI:10.1063/1.464569.
  • Shukla K, Rajagopalan R. Stability diagrams for colloidal dispersions with attractive interactions: an analytical approximation. Colloids Surf A. 1993;79(2–3):249–262. DOI:10.1016/0927-7757(93)80179-I.
  • Kalyuzhnyi Y, Cummings P. Phase diagram for the Lennard-Jones fluid modelled by the hard-core Yukawa fluid. Mol Phys. 1996;87(6):1459–1462.
  • Bouaskarne M, Amokrane S, Regnaut C. Hard core Yukawa fluid with temperature and density dependent interaction: phase diagram of the AOT/water/decane microemulsion. J Chem Phys. 1999;111(5):2151–2156. DOI:10.1063/1.479485.
  • Ramírez-González PE, Vizcarra-Rendón A, de J Guevara-Rodríguez F, et al. Glass–liquid–glass reentrance in mono-component colloidal dispersions. J Phys Condens Matter. 2008;20(20):205104.
  • Bergenholtz J, Fuchs M. Nonergodicity transitions in colloidal suspensions with attractive interactions. Phys Rev E. 1999 May;59:5706–5715. DOI:10.1103/PhysRevE.59.5706.
  • Waisman E. The radial distribution function for a fluid of hard spheres at high densities. Mol Phys. 1973;25(1):45–48. DOI:10.1080/00268977300100061.
  • Blum L, Hoye JS. Solution of the Ornstein-Zernike equation with Yukawa closure for a mixture. J Stat Phys. 1978;19(4):317–324. DOI:10.1007/BF01011750.
  • Blum L, Vericat F, Herrera-Pacheco JN. On the analytical solution of the Ornstein-Zernike equation with Yukawa closure. J Stat Phys. 1992;66:249–262. DOI:10.1007/BF01060067.
  • Ginoza M, Yasutomi M. Analytical structure factors for colloidal fluids with size and interaction polydispersities. Phys Rev E. 1998;58(3):3329–3333. DOI:10.1103/PhysRevE.58.3329.
  • Blum L, Arias M. Structure of multi-component/multi-Yukawa mixtures. J Phys Condens Matter. 2006 Sep;18(36):S2437–S2449.
  • Cruz-Vera A, Herrera JN. Static structure factor for a fluid with interaction of hard spheres plus two Yukawa tails. Physica A. 2008 Oct;387(23):5696–5706. DOI:10.1016/j.physa.2008.06.024.
  • Hoye J, Stell G, Waisman E. Ornstein-Zernike equation for a two-Uukawa c(r) with core condition. Mol Phys. 1976;32(1):209–230. DOI:10.1080/00268977600101731.
  • Liu Y, Chen W-R, Chen S-H. Cluster formation in two-Yukawa fluids. J Chem Phys. 2005;122(4):044507. DOI:10.1063/1.1830433.
  • Shukla A, Mylonas E, Di Cola E, et al. Absence of equilibrium cluster phase in concentrated lysozyme solutions. Proc Natl Acad Sci U S A. 2008;105(13):5075–5080. DOI:10.1073/pnas.0711928105.
  • Liu Y, Fratini E, Baglioni P, et al. Effective long-range attraction between protein molecules in solutions studied by small angle neutron scattering. Phys Rev Lett. 2005 Sep;95:118102. DOI:10.1103/PhysRevLett.95.118102.
  • Wu J, Liu Y, Chen W-R, et al. Structural arrest transitions in fluids described by two Yukawa potentials. Phys Rev E. 2004 Nov;70:050401. DOI:10.1103/PhysRevE.70.050401.
  • Ginoza M. Solution of Ornstein–Zernike equation for a mixture of hard spheres with Yukawa closure: the case of factorizable coefficients. J Phys Soc Jpn. 1986;55(1):95–101. DOI:10.1143/JPSJ.55.95.
  • Blum L, Hernando JA. Yukawa fluids: a new solution of the one component case. Condens Matter Phys. 2003;6(3):447–458. DOI:10.5488/CMP.6.3.447.
  • Hoye J, Blum L. Solution of the Yukawa closure of the Ornstein-Zernike equation. J Stat Phys. 1977;16(5):399–413. DOI:10.1007/BF01013184.
  • Hoye J, Stell G. Ornstein-Zernike equation with core condition and direct correlation function of Yukawa form. Mol Phys. 1976;32(1):195–207. DOI:10.1080/00268977600101721.
  • Wertheim MS. Exact solution of the Percus-Yevick integral equation for hard spheres. Phys Rev Lett. 1963 Apr;10:321–323. DOI:10.1103/PhysRevLett.10.321.
  • Ginoza M. Simple MSA solution and thermodynamic theory in a hard-sphere Yukawa system. Mol Phys. 1990;71(1):145–156. DOI:10.1080/00268979000101701.
  • Herrera JN, Cummings PT, Ruíz-Estrada H. Static structure factor for simple liquid metals. Mol Phys. 1999;96(5):835–847. DOI:10.1080/00268979909483021.
  • Arai T, Arisawa T, Yokoyama I. Correlation entropies of the hard sphere fluid based on the generalized mean spherical approximation due to Waisman. Physica B. 1999;270(1–2):52–59. DOI:10.1016/S0921-4526(99)00164-7.
  • Barker JA, Henderson D. Theories of liquids. Annu Rev Phys Chem. 1972;23(1):439–484. DOI:10.1146/annurev.pc.23.100172.002255.
  • Méndez-Alcaraz J, Chávez-Páez M, D’Aguanno B, et al. Structural properties of colloidal suspensions. Physica A. 1995;220(1–2):173–191. DOI:10.1016/0378-4371(95)00112-K.
  • Heinen M, Holmqvist P, Banchio AJ, et al. Pair structure of the hard-sphere Yukawa fluid: an improved analytic method versus simulations, rogers-young scheme, and experiment. J Chem Phys. 2011;134(4):044532. DOI:10.1063/1.3524309.
  • Rogers FJ, Young DA. New, thermodynamically consistent, integral equation for simple fluids. Phys Rev A. 1984 Aug;30:999–1007. DOI:10.1103/PhysRevA.30.999.
  • Barker J, Henderson D. Monte Carlo values for the radial distribution function of a system of fluid hard spheres. Mol Phys. 1971;21(1):187–191. DOI:10.1080/00268977100101331.
  • Yeomans-Reyna L, Chávez-Rojo MA, Ramírez-González PE, et al. Dynamic arrest within the self-consistent generalized Langevin equation of colloid dynamics. Phys Rev E. 2007 Oct;76:041504. DOI:10.1103/PhysRevE.76.041504.
  • Godfrin PD, Castañeda-Priego R, Liu Y, et al. Intermediate range order and structure in colloidal dispersions with competing interactions. J Chem Phys. 2013;139(15):154904. DOI:10.1063/1.4824487.
  • Broccio M, Costa D, Liu Y, et al. The structural properties of a two-Yukawa fluid: simulation and analytical results. J Chem Phys. 2006;124(8):084501. DOI:10.1063/1.2166390.
  • Liu Y, Porcar L, Chen J, et al. Lysozyme protein solution with an intermediate range order structure. J Phys Chem B. 2011;115(22):7238–7247. DOI:10.1021/jp109333c.
  • Cardinaux F, Zaccarelli E, Stradner A, et al. Cluster-driven dynamical arrest in concentrated lysozyme solutions. J Phys Chem B. 2011;115(22):7227–7237. DOI:10.1021/jp112180p.
  • Stradner A, Cardinaux F, Schurtenberger P. A small-angle scattering study on equilibrium clusters in lysozyme solutions. J Phys Chem B. 2006;110(42):21222–21231. DOI:10.1021/jp0639804.
  • Stradner A, Sedgwick H, Cardinaux F, et al. Equilibrium cluster formation in concentrated protein solutions and colloids. Nature. 2004;432(7016):492–495. DOI:10.1038/nature03109.
  • Rushbrooke G. On the hyper-chain approximation in the theory of classical fluids. Physica. 1960;26(4):259–265. DOI:10.1016/0031-8914(60)90020-3.
  • Kim JM, Castañeda-Priego R, Liu Y, et al. On the importance of thermodynamic self-consistency for calculating clusterlike pair correlations in hard-core double Yukawa fluids. J Chem Phys. 2011;134(6):064904. DOI:10.1063/1.3530785.
  • Riest J, Nagele G. Short-time dynamics in dispersions with competing short-range attraction and long-range repulsion. Soft Matter. 2015;11:9273–9280. DOI:10.1039/C5SM02099A.
  • Bomont J-M, Bretonnet J-L, Costa D. Temperature study of cluster formation in two-Yukawa fluids. J Chem Phys. 2010;132(18):184508. DOI:10.1063/1.3418609.
  • Verlet L, Weis -J-J. Equilibrium theory of simple liquids. Phys Rev A. 1972;5:939–952. DOI:10.1103/PhysRevA.5.939.
  • Carnahan NF, Starling KE. Equation of state for nonattracting rigid spheres. J Chem Phys. 1969;51(2):635–636. DOI:10.1063/1.1672048.
  • Tang Y, Lu BC. Improved expressions for the radial distribution function of hard spheres. J Chem Phys. 1995;103(17):7463–7470. DOI:10.1063/1.470317.
  • Arrieta E, Jedrzejek C, Marsh KN. Mean spherical approximation algorithm for multicomponent multi-Yukawa fluid mixtures: study of vapor–liquid, liquid–liquid, and fluid–glass transitions. J Chem Phys. 1991;95(9):6806–6837. DOI:10.1063/1.461493.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.