111
Views
2
CrossRef citations to date
0
Altmetric
Regular articles

Visualisation-based analysis of structure and dynamics of liquid aluminosilicate under compression

, , &
Pages 62-84 | Received 14 Sep 2015, Accepted 12 Mar 2016, Published online: 18 Apr 2016

References

  • Smedskjaer MM. Topological model for boroaluminosilicate glass hardness. Frontier Mater. 2014;1(23):1–6.
  • Hehlen B, Neuville DR. Raman response of network modifier cations in aluminosilicate glasses. J Phys Chem B. 2015;119:4093–4098. doi:10.1021/jp5116299.
  • Duw J. Molecular dynamics simulations of the structure and properties of low silica yttrium aluminosilicate glasses. J Am Ceram Soc. 2009;92(1):87–95. doi:10.1111/j.1551-2916.2008.02853.x.
  • Neuville DR, Cormier L, de Ligny D, et al. Environments around Al, Si, and Ca in aluminate and aluminosilicate melts by X-ray absorption spectroscopy at high temperature. Am Mineralogist. 2008;93:228–234. doi:10.2138/am.2008.2646.
  • Durrani SK, Hussain MA, Hussain SZ, et al. Fabrication of magnesium aluminum silicate glass ceramics by sintering route. Mater Sci Poland. 2010;28(2):459–466.
  • Horbach J, Kob W. Static and dynamic properties of a viscous silica melt. Phys Rev B. 1999;60:3169–3181. doi:10.1103/PhysRevB.60.3169.
  • Oligschleger C. Dynamics of SiO2 glasses. Phys Rev B. 1999;60:3182–3193. doi:10.1103/PhysRevB.60.3182.
  • Vollmayr-Lee K, Zippelius A. Temperature-dependent defect dynamics in the network glass SiO2. Phys Rev E. 2013;88:052145. doi:10.1103/PhysRevE.88.052145.
  • Koziatek P, Barrat JL, Rodney D. Short- and medium-range orders in as-quenched and deformed SiO2 glasses: an atomistic study. J Non-Cryst Solids. 2015;414:7–15. doi:10.1016/j.jnoncrysol.2015.01.009.
  • Jin W, Kalia RK, Vashishta P, et al. Structural transformation in densified silica glass: A molecular-dynamics study. Phys Rev B. 1994;50:118–131. doi:10.1103/PhysRevB.50.118.
  • Sato T, Funamori N. High-pressure structural transformation of SiO2 glass up to 100 Gpa. Phys Rev B. 2010;82:184102. doi:10.1103/PhysRevB.82.184102.
  • Trachenko K, Dove MT. Densification of silica glass under pressure. J Phys Condens Matter. 2002;14:7449–7459. doi:10.1088/0953-8984/14/32/304.
  • Inamura Y, Arai M, Nakamura M, et al. Intermediate range structure and lowenergy dynamics of densified vitreous silica. J Non-Cryst Solids. 2001;293–295:389–393. doi:10.1016/S0022-3093(01)00824-9.
  • Liang Y, Miranda CR, Scandolo S. Mechanical strength and coordination defects in compressed silica glass: molecular dynamics simulations. Phys Rev B. 2007;75:024205. doi:10.1103/PhysRevB.75.024205.
  • Trachenko K, Dove MT. Compressibility, kinetics, and phase transition in pressurized amorphous silica. Phys Rev B. 2003;67:064107. doi:10.1103/PhysRevB.67.064107.
  • Inamura Y, Katayama Y, Utsumi W, et al. Transformations in the intermediate-range structure of SiO2 glass under high pressure and temperature. Phys Rev Lett. 2004;93:015501. doi:10.1103/PhysRevLett.93.015501.
  • Susman S, Volin KJ, Price DL, et al. Intermediate-range order in permanently densified vitreous SiO2: a neutron-diffraction and moleculardynamics study. Phys Rev B. 1991;43:1194–1197. doi:10.1103/PhysRevB.43.1194.
  • Meade C, Hemley RJ, Mao HK. High-pressure X-ray diffraction of SiO2 glass. Phys Rev Lett. 1992;69:1387–1390. doi:10.1103/PhysRevLett.69.1387.
  • Van Ginhoven RM. Silica glass structure generation for ab initio calculations using small samples of amorphous silica. Phys Rev B. 2005;71:024208. doi:10.1103/PhysRevB.71.024208.
  • Trave A, Tangney P, Scandolo S, et al. Pressure-induced structural changes in liquid SiO2 from Ab initio simulations. Phys Rev Lett. 2002;89:245504. doi:10.1103/PhysRevLett.89.245504.
  • Gutierrez G, Belonoshko AB, Ahuja R, et al. Structural properties of liquid Al2O3: a molecular dynamics study. Phys Rev E. 2000;61(3):2723–2729. doi:10.1103/PhysRevE.61.2723.
  • Hoang VV. About an order of liquid–liquid phase transition in simulated liquid Al2O3. Phys Lett A. 2005;335:439–443. doi:10.1016/j.physleta.2004.12.040.
  • Hemmati M. Structure of liquid Al2O3 from a computer simulation model. J Phys Chem B. 1999;103:4023–4028. doi:10.1021/jp983529f.
  • Vashishta P, Kalia RK, Nakano A, et al. Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina. J Appl Phys. 2008;103:083504. doi:10.1063/1.2901171.
  • Skinner LB, Barnes AC, Salmon PS, et al. Joint diffraction and modeling approach to the structure of liquid alumina. Phys Rev B. 2013;87:024201. doi:10.1103/PhysRevB.87.024201.
  • Lamparter P, Kniep R. Structure of amorphous Al2O3. Physica B. 1997;234-236:405–406. doi:10.1016/S0921-4526(96)01044-7.
  • Jahn S, Madden PA. Structure and dynamics in liquid alumina: simulations with an ab initio interaction potential. J Non-Cryst Solids. 2007;353(32–40):3500–3504. doi:10.1016/j.jnoncrysol.2007.05.104.
  • Łodziana Z. Density functional simulation of metal oxides: Al2O3 AND Fe3O4. Task Quart. 2004;8(4):561–572.
  • Murdoch JB, Stebbing JF. High-resolution 29Si NMR study of silicate and aluminosilicate glasses: the effect of network-modifying cations. Am Mineralogist. 1985;70:332–343.
  • Wang Y, Sakamaki T, Skinner LB, et al. Atomistic insight into viscosity and density of silicate melts under pressure. Nat Commun. 2014;5:3241.
  • Zeidler A, Salmon PS, Skinner LB. Packing and the structural transformations in liquid and amorphous oxides from ambient to extreme conditions. Proc Natl Acad Sci. 2014;111(28):10045–10048. doi:10.1073/pnas.1405660111.
  • Strelov KK, Kashcheev ID. Phase diagram of the system A12O3-SiO2. Refract Ind Ceram. 1995;36(7–8):244–246.
  • Aksay IA, Dabbs DM, Sarikaya M. Mullite for structural, electronic, and optical applications. J Am Ceram Soc. 1991;74(10):2343–2358. doi:10.1111/jace.1991.74.issue-10.
  • Pask JA. Stable and metastable phase equilibria and reactions in the SiO2-α-Al203 system. Ceram Int. 1983;9(4):107–113. doi:10.1016/0272-8842(83)90009-3.
  • Caballero A, Valle FJ, De Aza S, et al. Constitution of calcined refractory-grade bauxites: an interpretation. Ceram Int. 1985;11(2):45–50. doi:10.1016/0272-8842(85)90008-2.
  • Chaudhuri SP. Melting/decomposition of mullite: incongruent or congruent? I. Phase equilibria of the system Al2O3-SiO2. Ceram Int. 1987;13(3):167–175. doi:10.1016/0272-8842(87)90027-7.
  • Chaudhuri SP. Melting/decomposition of mullite: incongruent or congruent? II. Responsible factors for dual nature of mullite. Ceram Int. 1987;13(3):177–181. doi:10.1016/0272-8842(87)90028-9.
  • Poe BT, Romano C, Zotov N, et al. Compression mechanisms in aluminosilicate melts: Raman and XANES spectroscopy of glasses quenched from pressures up to 10 GPa. Chem Geol. 2001;174:21–31. doi:10.1016/S0009-2541(00)00304-1.
  • Allwardt JR, Stebbins JF, Schmidt BC, et al. Aluminum coordination and the densification of high-pressure aluminosilicate glasses. Am Mineralogist. 2005;90:1218–1222.
  • Schmucker M, Schneider H. New evidence for tetrahedral triclusters in aluminosilicate glasses. J Non-Cryst Solids. 2002;311:211–215. doi:10.1016/S0022-3093(02)01632-0.
  • Schmucker M, MacKenzie KJD, Schneider H, et al. NMR studies on rapidly solidified and SiO2-A1203-Na2O glasses. J Non-Cryst Solids. 1997;217:99–105. doi:10.1016/S0022-3093(97)00127-0.
  • Neuville DR, Cormier L, Montouillout V, et al. Local Al site distribution in aluminosilicate glasses by 27Al MQMAS NMR. J Non-Cryst Solids. 2007;353:180–184. doi:10.1016/j.jnoncrysol.2006.09.035.
  • Mazurin S, Shvaiko-Shvaikovskaya TP. Handbook of glass data part a/silica glass and binary silicate. Amsterdam: Elsevier; 1983.
  • Yap AT-W, Förster H, Elliott SR. Spin-echo double resonance NMR evidence for preferential like-cation clustering in mixed-alkali disilicate glasses. Phys Rev Lett. 1995;75:3946–3949. doi:10.1103/PhysRevLett.75.3946.
  • Ha J-S, Chawla KK. The effect of precursor characteristics on the crystallization and densification of diphasic mullite gels. Ceram Int. 1993;19(5):299–305. doi:10.1016/0272-8842(93)90042-P.
  • Barta R, Barluska M. Studie a mullitu. In: Barsegov AA, editor. Technologie silicatu: Sbornik vizkumnych, praci. IV (Ed. by. Prague: SNTL; 1957. p. 146–181.
  • Berezhnoi AS. Multicomponent alkali oxide systems. Kiev: Naukova Dumka; 1988. [in Russian]
  • Berezhnoi AS, Pitak YN, Ponomarenko AD, et al. Physicochemical systems of refractory nonmetallic and silicate materials. Kiev: UMK VO; 1992. [in Russian]
  • Toropov NA, Barzakovskii VP, Lapin VV, et al. Phase diagram of silicate systems. Moscow: Nauka; 1965. [in Russian]
  • Winkler A, Horbach J, Kob W, et al. Structure and diffusion in amorphous aluminum silicate: a molecular dynamics computer simulation. J Chem Phys. 2004;120(1):384–393. doi:10.1063/1.1630562.
  • Voigt U, Lammert H, Eckert H, et al. Cation clustering in lithium silicate glasses: quantitative description by solid-state NMR and molecular dynamics simulations. Phys Rev B. 2005;72:064207. doi:10.1103/PhysRevB.72.064207.
  • Drewitt JWE, Jahn S, Sanloup C, et al. Development of chemical and topological structure in aluminosilicate liquids and glasses at high pressure. J Phys Condens Matter. 2015;27:105103.
  • Pfleiderer P, Horbach J, Binder K. Structure and transport properties of amorphous aluminium silicates: computersimulation studies. Chem Geol. 2006;229:186–197. doi:10.1016/j.chemgeo.2006.01.020.
  • Hoang VV. Dynamical heterogeneity and diffusion in high-density Al2O3 −2SiO2 melts. Physica B. 2007;400:278–286. doi:10.1016/j.physb.2007.07.023.
  • Bryce JG, Spera FJ, Stein DJ. Pressure dependence of self-diffusion in the NaAlO2-SiO2 system: compositional effects and mechanisms. Am Mineralogist. 1999;84:345–356. doi:10.2138/am-1999-0318.
  • Deenamma Vargheese K, Tandia A, Mauro JC. Origin of dynamical heterogeneities in calcium aluminosilicate liquids. J Chem Phys. 2010;132:194501. doi:10.1063/1.3429880.
  • Zheng K, Yang F, Wang X, et al. Investigation of self-diffusion and structure in calcium aluminosilicate slags by molecular dynamics simulation. Mater Sci Appl. 2014;5:73–80. doi:10.4236/msa.2014.52011.
  • Liang Y, Richter FM, Davis AM, et al. Diffusion in silicate melts: I. Self diffusion in CaOAl2O3- SiO2 at 1500°C and 1 GPa. Geochim Cosmochim Acta. 1996;60(22):4353–4367. doi:10.1016/S0016-7037(96)00288-8.
  • Cormier L, Neuville DR. Georges calas, relationship between structure and glass transition temperature in low-silica calcium aluminosilicate glasses: the origin of the anomaly at low silica content. J Am Ceram Soc. 2005;88(8):2292–2299. doi:10.1111/j.1551-2916.2005.00428.x.
  • Binder K, Horbach J, Winkler A, et al. Modeling glass materials. Ceram Int. 2005;31:713–717. doi:10.1016/j.ceramint.2004.07.011.
  • Bauchy M. Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: the role of the potential. J Chem Phys. 2014;141(2):024507. doi:10.1063/1.4886421.
  • Tossell JA, Cohen RE. Calculation of the electric field gradients at ‘tricluster’-like O atoms in the polymorphs of Al2SiO5 and in aluminosilicate molecules: models for tricluster O atoms in glasses. J Non-Cryst Solids. 2001;286:187–199. doi:10.1016/S0022-3093(01)00506-3.
  • Hung PK, Hong NV. Simulation study of polymorphism and diffusion anomaly for SiO2 and GeO2 liquid. Eur Phys J B. 2009;71:105–110. doi:10.1140/epjb/e2009-00276-2.
  • Hong NV, Huy NV, Hung PK. The correlation between coordination and bond angle distribution in network-forming liquids. Mater Sci Poland. 2012;30:121–130. doi:10.2478/s13536-012-0019-y.
  • Hong NV, Lan MT, Nhan NT, et al. Polyamorphism and origin of spatially heterogeneous dynamics in networkforming liquids under compression: Insight from visualization of molecular dynamics data. Appl Phys Lett. 2013;102:191908. doi:10.1063/1.4807134.
  • Tandia A, Timofeev NT, Mauro JC, et al. Defect-mediated self-diffusion in calcium aluminosilicate glasses: a molecular modeling study. J Non-Cryst Solids. 2011;357(7):1780–1786. doi:10.1016/j.jnoncrysol.2010.12.078.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.