295
Views
11
CrossRef citations to date
0
Altmetric
Articles

Viscosity of 1-ethyl-3-methylimidazolium methanesulfonate over a wide range of temperature and Vogel–Tamman–Fulcher model

, , , &
Pages 703-717 | Received 30 Mar 2017, Accepted 10 Sep 2017, Published online: 25 Sep 2017

References

  •  Kokorin A, editor. Ionic liquids: theory, properties, new approaches. Rijeka: Intech Web Org Croatia; 2011. ​​​​​ ​​​​​
  • Wu B, Reddy RG, Rogers RD. Novel ionic liquid thermal storage for solar thermal electric power systems. In: Campbell-Howe R, editor. Proceedings of Solar Forum 2001 Solar Energy: the Power to Choose; 2001 Apr 22–25; Washington (DC): American Solar Energy Society; 2001. ​​​​​ ​​​​​
  • Valkenburg MEV, Vaughn RL, Williams M, et al. Thermochemistry of ionic liquid heat-transfer fluids. Thermochim Acta. 2005;425:181–188.
  • Chandra S. Recent trends in high efficiency photo-electrochemical solar cell using dye-sensitized photo-electrodes and ionic liquid based redox electrolytes. Proc Nat Acad Sci Sect Phys Sci. 2010;82:5–19.
  • Pinkert A, Marsh KN, Pang S. Reflections on the solubility of cellulose. Ind Eng Chem Res. 2015;49:11121–11130.
  • Borra EF, Seddiki O, Angel R, et al. Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature. 2007;447:979–981.
  • Shah MR, Anantharaj R, Banerjee T, et al. Quaternary (liquid+liquid) equilibria for systems of imidazolium based ionic liquids+thiophene+pyridine+cyclohexane at 298.15 K: experiments and quantum chemical predictions. J Chem Thermodyn. 2013;62:142–150.
  • Liu H, Maginn E, Visser AE, et al. Thermal and transport properties of six ionic liquids: an experimental and molecular dynamics study. Ind Eng Chem Res. 2012;51:7242–7254.
  • Safarov J, Huseynova G, Bashirov M, et al. High temperatures and high pressures density measurements of 1-ethyl-3-methylimidazolium methanesulfonate and Tait-type equation of state. J Mol Liq. 2017;238:347–358. ​​​​​
  • Schmidt H, Stephan M, Safarov J, et al. Experimental study of the density and viscosity of 1-ethyl-3-methylimidazolium ethyl sulfate. J Chem Thermodyn. 2012;47:68–75.
  • Safarov J, Hamidova R, Zepik S, et al. Thermophysical properties of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide at high temperatures and pressures. J Mol Liq. 2013;187:137–156.
  • Hamidova R, Kul I, Safarov J, et al. Thermophysical properties of 1-butyl-3-methylimidazoliumbis (trifluoromethylsulfonyl)imide at high temperatures and pressures. Brazilian J Chem Eng. 2015;32:303–316.
  • Huseynova G, Hamidova R, Safarov J, et al. Investigation of the density and speed of sound of ionic liquid 1-ethyl-3-methylimidazolium methanesulfonate. Trans Azer Nat Acad Sci Ser Phys-Math Tech Sci. 2016;5:128–135.
  • Polikhronidi NG, Batyrova RG, Abdulagatov IM, et al. Saturated and compressed liquid heat capacity at constant volume for 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide). Phys Chem Liq. 2014;52:657–679.
  • Polikhronidi NG, Batyrova RG, Abdulagatov IM, et al. Thermodynamic properties at saturation derived from experimental two-phase isochoric heat capacity of 1-hexyl-3-methylimidazolium bis [(trifluoromethyl) sulfonyl]imide. Int J Thermophys. 2016;37:103–130.
  • Abdulagatov IM, Tekin A, Safarov J, et al. Densities, excess, apparent, and partial molar volumes of binary mixtures of ethanol+[BMIM][BF4] as a function of temperature, pressure, and concentration. Int J Thermophys. 2008;29:505–533.
  • Abdulagatov IM, Tekin A, Safarov J, et al. High-pressure densities and derived volumetric properties (excess, apparent, and partial molar volumes) of binary mixtures of methanol+[BMIM][PF6]. J Sol Chem. 2008;37:801–833.
  • Abdulagatov IM, Tekin A, Safarov J, et al. Experimental study of the volumetric properties (density, apparent, partial, and excess molar volumes) of binary mixtures of methanol+[BMIM][BF4]. J Chem Thermodyn. 2008;40:1386–1401.
  • Abdulagatov IM, Safarov J, Guliyev T, et al. High temperature and high pressure volumetric properties of (methanol+[BMIM][OcSO3]) mixtures. Phys Chem Liquids. 2009;47:9–34.
  • Safarov J, Kul I, Talibov MA, et al. Vapor pressures and activity coefficients of methanol in binary mixtures with 1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data. 2015;60:1648–1663.
  • Namazova A, Suleymanli K, Aliev A, et al. Experimental investigation of viscosity of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate. Trans Azer Nat Acad Sci Ser Phys-Math Tech Sci. in press. ​​​​​
  • Hasse B, Lehmann J, Assenbaum D, et al. Viscosity, interfacial tension, density, and refractive index of ionic liquids [EMIM][MeSO3], [EMIM][MeOHPO2], [EMIM][OcSO4], and [BBIM][NTf2] in dependence on temperature at atmospheric pressure. J Chem Eng Data. 2009;54:2576–2583.
  • Blesic M, Swadz´ba-Kwas´ny M, Belhocine T, et al. 1-Alkyl-3-methylimidazolium alkanesulfonate ionic liquids, [CnH2n+1mim][CkH2k+1SO3]: synthesis and physicochemical properties. Phys Chem Chem Phys. 2009;11:8939–8948.
  • Freire MG, Teles ARR, Rocha MAA, et al. Thermophysical characterization of ionic liquids able to dissolve biomass. J Chem Eng Data. 2011;56:4813–4822.
  • Singh MP, Singh RK. Correlation between ultrasonic velocity, surface tension, density, and viscosity of ionic liquids. Fluid Phase Equilib. 2011;304:1–6.
  • Stark A, Zidell AW, Hoffmann MM. Is the ionic liquid 1-ethyl-3-methylimidazolium methanesulfonate [Emim][MeSO3] capable of rigidly binding water? J Mol Liq. 2011;160:166–179.
  • Singh MP, Mandal SK, Verma YL, et al. Viscoelastic, surface, and volumetric properties of ionic liquids [BMIM][OcSO4], [BMIM][PF6], and [EMIM][MeSO3]. J Chem Eng Data. 2014;59:2349–2359.
  • Tenney CM, Massel M, Mayes JM, et al. A computational and experimental study of the heat transfer properties of nine different ionic liquids. J Chem Eng Data. 2014;59:391−399.
  • Krannich M, Heym F, Jess A. Characterization of six hygroscopic ionic liquids with regard to their suitability for gas dehydration: density, viscosity, thermal and oxidative stability, vapor pressure, diffusion coefficient, and activity coefficient of water. J Chem Eng Data. 2016;61:1162–1176.
  • Jung Y-H, Jung J-Y, Jin Y-R, et al. Solubility of carbon dioxide in imidazolium-based ionic liquids with a mathanesulfonate anion. J Chem Eng Data. 2012;57:3321–3329.
  • Himmler S, Konig A, Wasserscheid P. Synthesis of [EMIM]OH via bipolar membrane electrodialysis-precursors production for the combinatorial synthesis of [EMIM]=based ionic liquids. Green Chem. 2007;9:935–942.
  • Cooper EI, Sullivan EJM. Proceedings of the 8th International Symposium Molten Salts. Vols. 92–16. Pennington (NJ): The Electrochimical Society; 1992. p. 386–396.
  • Frenkel M, Chirico R, Diky V, et al. NIST thermo data engine, NIST standard reference database 103b-pure compound, binary mixtures, and chemical reactions, version 5.0, Boulder, Colorado-Gaithersburg (MD): National Institute Standards and Technology 2010.
  • Harris KR, Kanakubo M. Self-diffusion coefficients and related transport properties for a number of fragile ionic liquids. J Chem Eng Data. 2016;61:2399−2411.
  • Anton Paar MCR 302 series instruction manual, software version 3.62. 2011. Graz: Anton Paar GmbH, Austria Document Number: C92IB001EN-C; 2016.
  • Schramm G A Practical Approach to Rheology and Rheometery, Gebrueder HAAKE GmbH, Karlsruhe: Federal Republic of Germany; 2003.
  • Sagdeev DI, Fomina MG, Mukhamedzyanov G, et al. Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293 K to 473 K and at atmospheric pressure. J Chem Thermodyn. 2011;43:1824–1843.
  • Sagdeev DI, Fomina MG, Mukhamedzyanov G, et al. Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293 K to 465 K and at high pressures up to 245 MPa. Fluid Phase Equilib. 2012;315:64–76.
  • Sagdeev DI, Fomina MG, Mukhamedzyanov G, et al. Experimental study of the density and viscosity of n-heptane at temperatures from 298 K to 470 K and pressures up to 245 MPa. Int J Thermophys. 2013;34:1–33.
  • Sagdeev DI, Fomina MG, Mukhamedzyanov G, et al. Experimental study of the density and viscosity of 1-octene and 1-decene at high temperatures and high pressures. High Temp High Press. 2013;42:509–536.
  • Sagdeev DI, Fomina MG, Mukhamedzyanov G, et al. Experimental study and correlation models of the density and viscosity of 1-hexene and 1-heptene at temperatures from (298 to 473) K and pressures up to 245 MPa. J Chem Eng Data. 2014;59:1105–1119.
  • Sagdeev DI, Fomina MG, Mukhamedzyanov G, et al. Simultaneously measurements of the density and viscosity of 1-hexene + 1-decene mixtures at high temperatures and high pressures. J Mol Liq. 2014;197:160–170.
  • Sagdeev DI, Fomina MG, Mukhamedzyanov G, et al. Measurements of the density and viscosity of 1-hexene + 1-octene mixture at high temperatures and high pressures. Thermochim Acta. 2014;592:73–85.
  • Sagdeev DI, Fomina MG, Mukhamedzyanov G, et al. Density and viscosity of 1-octene + 1-decene mixture at high temperatures and high pressures. High Temp High Press. 2016;45:119–143.
  • Messaâdi A, Dhouibi N, Hamda H, et al. A new equation relating the viscosity Arrhenius temperature and the activation energy for some Newtonian classical solvents. J Chem. 2015;1–12.
  • Ben Haj-Kacem R, Ouerfelli N, Herr´aez J, et al. Contribution to modeling the viscosity Arrhenius-type equation for some solvents by statistical correlations analysis. Fluid Phase Equilib. 2014;383:11–20.
  • Glasstone S, Laidler K, Eyring E. Theory of rate processes. New York (NY): McGraw-Hill; 1941.
  • Tyrrell HJV, Harris KR. Diffusion in liquids. London: Butterworths; 1984.
  • Stokes RH, Mills R. Viscosity of electrolytes and related properties. New York: Pergamon Press; 1965.
  • Erday-Gruz T. Transport phenomena in aqueous solutions. New York: Wiley; 1942.
  • Vogel H. Das Temperatura bhcängigkeitsgesetz der Viskosität von Flüssigkeiten. Physikalische Zeitschrift. 1921;22:645–646.
  • Fulcher GS. Analysis of recent measurements of the viscosity of glasses. J Amer Ceramic Soc. 1925;8:339–355.
  • Tammann G, Hesse W. Die Abhängigkeit der Viscosität vonder Temperature bieunterkühlten Flüssigkeiten. Zeitschrift fur Anorganische und Allgemeine Chemie. 1926;156:245–251.
  • Tomida D, Kenmochi S, Tsukada T, et al. Viscosity and Thermal Conductivity of 1-Hexyl-3-methylimidazolium Tetrafluoroborate and 1-Octyl-3-methylimidazolium Tetrafluoroborate at Pressures up to 20 MPa. Int J Thermophys. 2012;33:959–969.
  • Viswanath DS, Ghosh TK, Prasad GHL, et al. Viscosity of liquids: theory, estimation, experiment, and data. Dordrecht (The Netherlands): Springer; 2007.
  • Andrade EN A theory of the viscosity of liquids-part I. Philosophical Magazine. 1934; 17: 497–511.
  • Andrade EN A theory of the viscosity of liquids-part II. Philosophical Magazine. 1934; 17: 698–732.
  • Abdulagatov IM, Azizov ND. Densities, apparent molar volumes, and viscosities of concentrated aqueous NaNO3 solutions at temperatures from 298 to 607 K and at pressures up to 30 MPa. J Sol Chem. 2005;34:645–685.
  • Abdulagatov IM, Azizov ND. Viscosity of aqueous calcium chloride solutions at high temperatures and high pressures. Fluid Phase Equilib. 2006;240:204–219.
  • Abdulagatov IM. Azizov ND. Viscosity of aqueous LiI solutions at 293-525 K and 0.1-40 MPa. Thermochim Acta. 2005;439:8–20.
  • Abdulagatov IM, Zeinalova A, Azizov ND. Viscosity of aqueous Ni(NO3)2 solutions at temperatures from (297 to 475) K and at pressures up to 30 MPa and concentration between (0.050 and 2.246) mol kg−1. J Chem Thermodyn. 2006;38:179–189.
  • Tanaka M. Study of the viscosity of strong concentrated electrolyte solutions. Nihon Kagaku Zasshi. 1961;82:147–152.
  • Grimes CE, Kestin J, Khalifa HE. Viscosity of aqueous KCl solutions in the temperature range 25–150°C and the pressure range 0-30 MPa. J Chem Eng Data. 1979;24:121–126.
  • Kestin J, Shankland IR. Viscosity of aqueous NaCl solutions in the temperature range 25–200°C and in the pressure range 0.1-30 MPa. Int J Thermophys. 1984;5:241–263.
  • Millat J, Dymond JH, Nieto de Castro CA, editors. Transport properties of fluids. Their correlation, prediction and estimation. New York (NY): IUPAC, Cambridge University Press; 1996.
  • Reid RC, Prausnitz JM, Poling BE. The properties of gases and Liquids. 4th ed. New York (NY): McGraw-Hill; 1987.
  • Cook LR, King HE, Herbst CA, et al. Pressure and temperature dependent viscosity of two glass forming liquids: glycerol and dibutyl phthalate. J Chem Phys. 1994;100:5178–5189.
  • Böhmer R, Ngai KL, Angel CA, et al. Nonexponential relaxations in strong and Fragile glass formers. J Chem Phys. 1993;99:4201–4209.
  • Comuñas MJP, Baylaucq A, Boned C, et al. High-pressure measurements of the viscosity and density of two polyethers and two dialkyl carbonates at high pressures. Int J Thermophys. 2001;22:749–768.
  • Lech T, Czechowski G, Jadzyn J. Viscosity of the series of 1,n-alkanediols. J Chem Eng Data. 2001;46:725–727.
  • Yoshimura M, Boned C, Galliéro G, et al. Influence of the chain length on the dynamic viscosity at high pressure of some 2-alkylamines: measurements and comparative study of some models. Chem Phys. 2010;369:126–137.
  • Watanabe M, Tokuda H. Ionicity in ionic liquids: origin of characteristic properties of ionic liquids. In: Plechkova NV, Seddon KR, editors. Ionic liquids further UnCOILed: critical expert overviews, 1st ed. New York (NY): John Wiley and Sons Inc.; 2014. Chap 8, 217–234. ​​​​​
  • Harris KR, Kanakubo M, Woolf LA. Temperature and pressure dependence of the viscosity of the ionic liquids 1-octyl-3methylimidazolium hexafluorophosphate and 1-octyl-3-methylimidazolium tetrafluoroborate. J Chem Eng Data. 2006;51:1161−1167.
  • Harris KR, Woolf LA, Kanakubo M. Temperature and pressure dependence of the viscosity of the ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate. J Chem Eng Data. 2005;50:1777−1782.
  • Rüther T, Harris KR, Horne MD, et al. Transport, electrochemical and thermophysical properties of two n-donor-functionalised ionic liquids. Chem -Eur J. 2013;19:17733−17744.
  • Harris KR, Kanakubo M. Self-diffusion, viscosity cross-correlation, distinct diffusion and resistance coefficients of the ionic liquid [BMIM][Tf2N] at high pressures. Phys Chem Chem Phys. 2015;17:23977−23993. ​​​​​
  • Angell CA. Formation of glasses from liquids and biopolymers. Science. 1995;267:1924−1935.
  • Seki S, Kobayashi T, Kobayashi Y, et al. Effect of cation and anion on physical properties of room-temperature ionic liquids. J Mol Liq. 2010;152:9–13.
  • Gardas RL, Costa HF, Freire MG, et al. Densities and derived thermodynamic properties of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ionic liquids. J Chem Eng Data. 2008;53:805–811.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.