159
Views
32
CrossRef citations to date
0
Altmetric
Articles

Development of Abraham model correlations for describing the transfer of molecular solutes into propanenitrile and butanenitrile from water and from the gas phase

, , , , , & show all
Pages 821-833 | Received 08 Oct 2017, Accepted 28 Oct 2017, Published online: 04 Nov 2017

References

  • Abraham MH. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem Soc Rev. 1993;22:73–83.
  • Abraham MH, Zissimos AM, Huddleston JG, et al. Some novel liquid partitioning systems: water−ionic liquids and aqueous biphasic systems. Ind Eng Chem Res. 2003;42:413–418.
  • Abraham MH, Smith RE, Luchtefeld R, et al. Prediction of solubility of drugs and other compounds in organic solvents. J Pharm Sci. 2010;99:1500–1515.
  • Brumfield M, Wadawadigi A, Kuprasertkul N, et al. Abraham model correlations for solute transfer into tributyl phosphate from both water and the gas phase. Phys Chem Liq. 2015;53:10–24.
  • Brumfield M, Acree WE Jr, Abraham MH. Abraham model correlations for describing solute transfer into diisopropyl ether. Phys Chem Liq. 2015;53:25–37.
  • Hart E, Grover D, Zettl H, et al. Abraham model correlations for solute transfer into 2-methoxyethanol from water and from the gas phase. J Mol Liq. 2015;209:738–744.
  • Sedov IA, Stolov MA, Hart E, et al. Abraham model correlations for solute transfer into 2-ethoxyethanol from water and from the gas phase. J Mol Liq. 2015;208:63–70.
  • Sedov IA, Khaibrakhmanova D, Hart E, et al. Development of Abraham model correlations for solute transfer into both 2-propoxyethanol and 2-isopropoxyethanol at 298.15 K. J Mol Liq. 2015;212:833–840.
  • Sedov IA, Stolov MA, Hart E, et al. Abraham model correlations for describing solute transfer into 2-butoxyethanol from both water and the gas phase at 298 K. J Mol Liq. 2015;209:196–202.
  • Sedov IA, Salikov T, Hart E, et al. Abraham model linear free energy relationships for describing the partitioning and solubility behavior of nonelectrolyte organic solutes dissolved in pyridine at 298.15 K. Fluid Phase Equilib. 2017;431:66–74.
  • Stovall DM, Schmidt A, Dai C, et al. Abraham model correlations for estimating solute transfer of neutral molecules into anhydrous acetic acid from water and from the gas phase. J Mol Liq. 2015;212:16–22.
  • Stovall DM, Dai C, Zhang S, et al. Abraham model correlations for describing solute transfer into anhydrous 1,2-propylene glycol for neutral and ionic species. Phys Chem Liq. 2016;54:1–13.
  • Sedov IA, Magsumov TI, Hart E, et al. Abraham model expressions for describing water-to-diethylene glycol and gas-to-diethylene glycol solute transfer processes at 298.15 K. J Solut Chem. 2017;46:331–351.
  • Sedov IA, Magsumov TI, Hart E, et al. Abraham model correlations for triethylene glycol solvent derived from infinite dilution activity coefficient, partition coefficient and solubility data measured at 298.15 K. J Solut Chem. Forthcoming 2017.
  • Abraham MH, Zad M, Acree WE Jr. The transfer of neutral molecules from water and from the gas phase to solvents acetophenone and aniline. J Mol Liq. 2015;212:301–306.
  • Abraham MH, Acree WE Jr. Equations for water-triolein partition coefficients for neutral species; comparison with other water-solvent partitions, and environmental and toxicological processes. Chemosphere. 2016;154:48–54.
  • Abraham MH, Acree WE Jr, Matteoli E. The factors that influence solubility in perfluoroalkane solvents. Fluid Phase Equilib. 2016;421:59–66.
  • Tong X, Woods D, Acree WE Jr, et al. Updated Abraham model correlations for correlating solute transfer into dry butanone and dry cyclohexanone solvents. Phys Chem Liq. 2017:1–13. Ahead of print.
  • Abraham MH, Acree WE Jr. Gas-solvent and water-solvent partition of trans-stilbene at 298 K. J Mol Liq. 2017;238:58–61.
  • De Fina KM, Sharp TL, Chuca I, et al. Solubility of the pesticide monuron in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory. Phys Chem Liq. 2002;40:255–268.
  • De Fina KM, Sharp TL, Spurgin MA, et al. Solubility of the pesticide diuron in organic nonelectrolyte solvents. Comparison of observed vs. predicted values based upon mobile order theory. Can J Chem. 2000;78:184–190.
  • Coaxum R, Hoover KR, Pustejovsky E, et al. Thermochemical behavior of dissolved carboxylic acid solutes: part 3 – mathematical correlation of 2-methylbenzoic acid solubilities with the Abraham solvation parameter model. Phys Chem Liq. 2004;42:313–322.
  • Ye S, Saifullah M, Grubbs LM, et al. Determination of the Abraham model solute descriptors for 3,5-dinitro-2-methylbenzoic acid from measured solubility data in organic solvents. Phys Chem Liq. 2011;49:821–829.
  • Daniels CR, Charlton AK, Wold RM, et al. Thermochemical behavior of dissolved carboxylic acid solutes: solubilities of 3-methylbenzoic acid and 4-chlorobenzoic acid in organic solvents. Can J Chem. 2003;81:1492–1501.
  • De Fina KM, Ezell C, Acree WE Jr. Solubility of ferrocene in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory. Phys Chem Liq. 2001;39:699–710.
  • Hoover KR, Stovall DM, Pustejovsky E, et al. Solubility of crystalline nonelectrolyte solutes in organic solvents — mathematical correlation of 2-methoxybenzoic acid and 4-methoxybenzoic acid solubilities with the Abraham solvation parameter model. Can J Chem. 2004;82:1353–1360.
  • Charlton AK, Daniels CR, Wold RM, et al. Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 3-nitrobenzoic acid solubilities with the Abraham general solvation model. J Mol Liq. 2005;116:19–28.
  • Stovall DM, Givens C, Keown S, et al. Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 4-chloro-3-nitrobenzoic acid and 2-chloro-5-nitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys Chem Liq. 2005;43:351–360.
  • Hoover KR, Coaxum R, Pustejovsky E, et al. Thermochemical behavior of dissolved carboxylic acid solutes: part 4 – mathematical correlation of 4-nitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys Chem Liq. 2004;42:339–347.
  • Bowen KR, Stephens TW, Lu H, et al. Experimental and predicted solubilities of 3,4-dimethoxybenzoic acid in select organic solvents of varying polarity and hydrogen-bonding character. Eur Chem Bull. 2013;2:577–583.
  • De Fina KM, Van TT, Acree WE Jr. Solubility of hexachlorobenzene in organic nonelectrolyte solvents. Comparison of observed vs. predicted values based upon mobile order model. Can J Chem. 2000;78:459–463.
  • De Fina KM, Van TT, Fletcher KA, et al. Solubility of diphenyl sulfone in organic nonelectrolyte solvents. Comparison of observed vs. predicted values based upon mobile order theory. Can J Chem. 2000;78:449–453.
  • Wilson A, Tian A, Chou V, et al. Experimental and predicted solubilities of 3,4-dichlorobenzoic acid in select organic solvents and in binary aqueous–ethanol mixtures. Phys Chem Liq. 2012;50:324–335.
  • Hernandez CE, De Fina KM, Roy LE, et al. Solubility of phenanthrene in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory. Can J Chem. 1999;77:1465–1470.
  • Fletcher KA, Coym KS, Roy LE, et al. Solubility of thioxanthen-9-one in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory (MOT). Phys Chem Liq. 1998;35:243–252.
  • Brumfield M, Wadawadigi A, Kuprasertkul N, et al. Determination of Abraham model solute descriptors for three dichloronitrobenzenes from measured solubilities in organic solvents. Phys Chem Liq. 2015;53:163–173.
  • Green CE, Abraham MH, Acree WE Jr, et al. Solvation descriptors for pesticides from the solubility of solids: diuron as an example. Pest Manage Sci. 2000;56:1043–1053.
  • Abraham MH, Acree WE Jr. Descriptors for ferrocene and some substituted ferrocenes. J Mol Liq. 2017;232:325–331.
  • Abraham MH, Zissimos AM, Acree WE Jr. Partition of solutes from the gas phase and from water to wet and dry di-n-butyl ether: a linear free energy relationship analysis. Phys Chem Chem Phys. 2001;3:3732–3736.
  • Acree WE Jr, Abraham MH. Solubility predictions for crystalline nonelectrolyte solutes dissolved in organic solvents based upon the Abraham general solvation model. Can J Chem. 2001;79:1466–1476.
  • Acree WE Jr, Abraham MH. Solubility predictions for crystalline polycyclic aromatic hydrocarbons (PAHs) dissolved in organic solvents based upon the Abraham general solvation model. Fluid Phase Equilib. 2002;201:245–258.
  • Stovall DM, Hoover KR, Acree WE Jr, et al. Solubility behavior of crystalline polycyclic aromatic hydrocarbons (PAHs): prediction of fluorene solubilities in organic solvents with the Abraham solvation parameter model. Polycyclic Aromat Compds. 2005;25:313–326.
  • Flanagan KB, Hoover KR, Acree WE Jr, et al. Mathematical correlation of 1,2,4,5-tetramethylbenzene solubilities in organic solvents with the Abraham solvation parameter model. Phys Chem Liq. 2006;44:173–182.
  • Acree WE Jr, Abraham MH. Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of benzil solubilities with the Abraham general solvation model. J Solut Chem. 2002;31:293–303.
  • Flanagan KB, Hoover KR, Garza O, et al. Mathematical correlation of 1-chloroanthraquinone solubilities in organic solvents with the Abraham solvation parameter model. Phys Chem Liq. 2006;44:377–386.
  • Monarrez CI, Stovall DM, Woo JH, et al. Solubility of 9-fluorenone in organic nonelectrolyte solvents: comparison of observed versus predicted values based upon mobile order theory. Phys Chem Liq. 2003;41:73–80.
  • Hoover KR, Acree WE Jr, Abraham MH. Mathematical correlation of phenothiazine solubilities in organic solvents with the Abraham solvation parameter model. Phys Chem Liq. 2006;44:367–376.
  • Hoover KR, Acree WE Jr, Abraham MH. Correlation of the solubility behavior of crystalline 1-nitronaphthalene in organic solvents with the Abraham solvation parameter model. J Solut Chem. 2005;34:1121–1133.
  • Huyskens F, Morissen H, Huyskens P. Solubilities of p-nitroanilines in various classes of solvents. Specific solute-solvent interactions. J Mol Struct. 1998;441:17–25.
  • Thomas ER, Newman BA, Long TC, et al. Limiting activity coefficients of nonpolar and polar solutes in both volatile and nonvolatile solvents by gas chromatography. J Chem Eng Data. 1982;27:399–405.
  • Castells CB, Eikens DI, Carr PW. Headspace gas chromatographic measurements of limiting activity coefficients of eleven alkanes in organic solvents at 25°C. 1. J Chem Eng Data. 2000;45:369–375.
  • Thomas ER, Newman BA, Nicolaides GL, et al. Limiting activity coefficients from differential ebulliometry. J Chem Eng Data. 1982;27:233–240.
  • Afrashtehfar S, Cave GCB. Limiting activity coefficients in dilute solutions of nonelectrolytes. II. Determination for polar-nonpolar and polar-polar binary mixtures, and the application of some solubility-parameter treatments. Can J Chem. 1986;64:198–203.
  • Vilcu R, Langshaw V, Cenuse Z. Isothermal liquid-vapor equilibrium in the acetonitrile-propionitrile system. Rev Roumaine Chim. 1987;32:1025–1031.
  • Park JH, Hussam A, Couasnon P, et al. Experimental reexamination of selected partition coefficients from Rohrschneider’s data set. Anal Chem. 1987;59:1970–1976.
  • Gracia M. Excess Gibbs energy. Methanol – butanenitrile system. Int DATA Ser Sel Data Mix Ser A. 1999;27:174.
  • Gracia M. Excess Gibbs energy. 1-Propanol – butanenitrile system. Int DATA Ser Sel Data Mix Ser A. 1999;27:180.
  • Gracia M. Excess Gibbs energy. 2-Propanol – butanenitrile system. Int DATA Ser Sel Data Mix Ser A. 1999;27:183.
  • Gracia M. Excess Gibbs energy. Butanenitrile – 1-butanol system. Int DATA Ser Sel Data Mix Ser A. 1999;27:186.
  • Gracia M. Excess Gibbs energy. Butanenitrile – 2-butanol system. Int DATA Ser Sel Data Mix Ser A. 1999;27:189.
  • Gracia M. Excess Gibbs energy. Butanenitrile – 2-methyl-1-propanol system. Int DATA Ser Sel Data Mix Ser A. 1999;27:192.
  • Gracia M. Excess Gibbs energy. Butanenitrile – 2-methyl-2-propanol system. Int DATA Ser Sel Data Mix Ser A. 1999;27:195.
  • Gracia M. Excess Gibbs energy. Butanenitrile – 1-pentanol system. Int DATA Ser Sel Data Mix Ser A. 1999;27:198.
  • Gracia M. Excess Gibbs energy. Butanenitrile – 1-hexanol system. Int DATA Ser SelData Mix Ser A. 1999;27:201.
  • Gracia M. Excess Gibbs energy. Butanenitrile – 1-octanol system. Int DATA Ser Sel Data Mix Ser A. 1999;27:207.
  • Gracia M. Excess Gibbs energy. Butanenitrile – 1-nonanol system. Int DATA Ser Sel Data Mix Ser A. 1999;27:210.
  • Gracia M. Excess Gibbs energy. Butanenitrile – 1-decanol system. Int DATA Ser Sel Data Mix Ser A. 1999;27:213.
  • Alessi P, Kikic I. Determination of activity coefficients of hydrocarbons in nitriles by liquid-liquid chromatography. Ann Di Chim. 1975;65:371–373.
  • Katritzky AR, Oliferenko AA, Oliferenko PV, et al. A general treatment of solubility. 1. The QSPR correlation of solvation free energies of single solutes in series of solvents. J Chem Inf Comp Sci. 2003;43:1794–1805.
  • Gjaldbaek JC, Andersen EK. The solubility of carbon dioxide, oxygen, carbon monoxide, and nitrogen in polar solvents. Acta Chem Scand. 1954;8:1398–1413.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.