261
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Structure, thermodynamics and diffusion in asymmetric binary mixtures: a molecular dynamics simulation study

, &
Pages 685-701 | Received 30 Jun 2017, Accepted 18 Nov 2017, Published online: 02 Dec 2017

References

  • Barrat JL, Hansen JP. Basic concepts of simple and complex liquids. Cambridge: Cambridge University Press; 2003.
  • Chandler D. From 50 years ago, the birth of modern liquid state science. Annu Rev Phys Chem. 2017;68:22.1–22.20.
  • Betaouaf F, Cailliez F, Rousseau B, et al. Molecular simulation of the thermodynamics, structural and transport properties of the liquid binary mixture methane+nitrogen. J Mol Liq. 2014;200:298–304.
  • Shvab I, Sadus RJ. Thermodynamic properties and diffusion of water + methane binary mixtures. J Chem Phys. 2014;140:104505.
  • Ghimire S, Adhikari NP. Study of structural and transport properties of argon, krypton and their binary mixtures at different temperatures. J Mol Model. 2017;23:94.
  • Wang J, Zhong H, Feng H, et al. Molecular dynamics simulation of diffusion coefficients and structural properties of some alkylbenzenes in supercritical carbon dioxide at infinite dilution. J Chem Phys. 2014;140:104501.
  • Miller NAT, Daivis PJ, Snook IK, et al. Computation of thermodynamic and transport properties to predict thermophoretic effects in an argon-krypton mixture. J Chem Phys. 2013;139:144504.
  • Bastea S. Thermodynamics and diffusion in size-symmetric and asymmetric dense electrolytes. J Chem Phys. 2011;135:084515.
  • Lobaskin V, Linse P. Accurate simulation of highly asymmetric electrolytes with charge asymmetry 20:1 and 20:2. J Chem Phys. 1998;109:3530–3541.
  • Hribar B, Kalyuzhnyi YV, Vlachy V. Ion-ion correlations in highly asymmetrical electrolytes. Mol Phys. 1996;87:1317–1331.
  • Hribar B, Vlachy V. Evidence of electrostatic attraction between equally charged macroions induced by divalent counterions. J Phys Chem B. 1997;101:3457–3459.
  • Linse P. On the convergence of simulation of asymmetric electrolytes with charge asymmetry 60:1. J Chem Phys. 1999;110:3493.
  • Taboada-Serrano P, Yiacoumi S, Tsouris C. Electrostatic surface interactions in mixtures of symmetric and asymmetric electrolytes: A Monte Carlo study. J Chem Phys. 2006;125:054717.
  • Jiang H, Adidharma H. Study of thermodynamic properties of symmetric and asymmetric electrolyte systems in mixture with neutral components: Monte Carlo simulation results and integral equation predictions. Mol Simul. 2015;41:727–734.
  • Sánchez-Díaz LE, Mendez-Maldonado GA, González-Melchor M, et al. Equilibrium structure of the multi-component screened charged hard-sphere fluid. J Chem Phys. 2011;135:014504.
  • Nuevo MJ, Morales JJ, Heyes DM. Mass dependence of isotope self-diffusion by molecular dynamics. Phys Rev E. 1995;51:2026.
  • Snook I, O’Malley B, McPhie M, et al. The approach to the Brownian limit in particulate dispersions. J Mol Liq. 2003;103-104:405–421.
  • Ould-Kaddour F, Levesque D. Molecular-dynamics investigation of tracer diffusion in a simple liquid: test of the Stokes-Einstein law. Phys Rev E. 2000;63:011205.
  • Bearman RJ, Jolly DL. Mass dependence of the self-diffusion coefficients in two equimolar binary liquid Lennard-Jones systems determined through molecular dynamics simulation. Mol Phys. 1981;44:665–675.
  • Alder BJ, Alley WE, Dymond JH. Studies in molecular dynamics. XIV. Mass and size dependence of the binary diffusion coefficient. J Chem Phys. 1974;61:1415.
  • Wei-Zhong L, Cong C, Jian Y. Molecular dynamics simulation of self-diffusion coefficient and its relation with temperature using simple Lennard Jones potential. Heat Transfer-Asian Res. 2008;37:86.
  • Fenz W, Mrygold M, Prytula O, et al. Concentration and mass dependence of transport coefficients and correlation functions in binary mixtures with high mass asymmetry. Phys Rev E. 2009;80:021202.
  • Sharma M, Yashonath S. Size dependence of solute diffusivity and Stokes-Einstein relationship: effect of van der Waals interactions. Diffusion Fundam. 2007;7:11.1-11.15.
  • Bastea S. Diffusion and conduction in a salt-free colloidal suspension via molecular dynamics simulations. Soft Matter. 2010;6:4223–4228.
  • Sharma R, Tankeshwar K, Ranganathan S. Mass dependence of mutual diffusion coefficient: computer simulation study. Phys Chem Liquids. 2011;49:206–218.
  • Mouas M, Gasser GJ, Hellal S, et al. Diffusion and viscosity of liquid tin: Green-Kubo relationship-based calculations from molecular dynamics simulations. J Chem Phys. 2012;136:094501.
  • Bretonnet JL. Self-diffusion coefficient of dense fluids from the pair correlation function. J Chem Phys. 2002;117:9370.
  • Lowen H. Colloidal soft matter under external control. J Phys: CondensMatter. 2001;13:R415–R432.
  • Mulero A, Galan CA, Parra MI, et al. Equations of state for hard spheres and hard disks. Lecture Notes Phy. 2008;753:37–102.
  • Weeks JD, Chandler D, Andersen HC. Role of repulsive forces in determining the equilibrium structure of simple liquids. J Chem Phys. 1971;54:5237.
  • Heyes DM, Okumura H. Some physical properties of the Weeks-Chandler-Andersen fluid. Mol Simul. 2006;32:45–50.
  • Boon JP, Yip S. Molecular hydrodynamics. New York (NY): McGraw-Hill; 1980.
  • Miyazaki K, Srinivas G, Bagchi B. The Enskog theory for transport coefficients of simple fluids with continuous potentials. J Chem Phys. 2001;114:6276.
  • Bagchi B, Bhattacharyya S. Mode coupling theory approach to the liquid-state dynamics. In: Prigogine RSA, editors. Advances in chemical physics. Vol. 116. USA: John Wiley & Sons; 2001. 67–221.
  • Guevara-Carrion G, Janzen T, Muñoz-Muñoz YM, et al. Mutual. diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride. J Chem Phys. 2016;144:124501.
  • Ohtori N, Ishii Y. Explicit expressions of self-diffusion coefficient, shear viscosity and the Stokes-Einstein relation for binary mixtures of Lennard-Jones liquids. J Chem Phys. 2015;143:164514.
  • Bhadauria R, Aluru NR. A multiscale transport model for Lennard-Jones binary mixtures based on interfacial friction. J Chem Phys. 2016;145:074115.
  • Marconi UMB, Malgaretti P, Pagonabarraga I. Tracer diffusion of hard-sphere binary mixtures under nano-confinement. J Chem Phys. 2015;143:184501.
  • Cui ST. Molecular self-diffusion in nanoscale cylindrical pores and classical Fick’s law predictions. J Chem Phys. 2005;123:054706.
  • Devi R, Srivastava S, Tankeshwar K. Static and dynamic effects of confinement on self-diffusion. Phys Chem Liquids. 2014;52:636–649.
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089.
  • Hünenberger PH. Thermostat algorithms for molecular dynamics simulations. Adv Polym Sci. 2005;173:105–149.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. New York (NY): Oxford University Press; 1991.
  • Limbach HJ, Arnold A, Mann BA, et al. ESPResSo-an extensible simulation package for research on soft matter systems. Comp Phys Commun. 2006;174:704–727.
  • Desrno M, Holm C. How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. J Chem Phys. 1998;109:7678.
  • Desrno M, Holm C. How to mesh up Ewald sums. II. An accurate error estimate for the particle-particle-particle-mesh algorithm. J Chem Phys. 1998;109:7694.
  • Einstein A. Investigation on the theory of Brownian movement. Newyork (NY): Dover; 1926.
  • Chung HS. On the Macedo-Litovitz hybrid equation for liquid viscosity. J Chem Phys. 1966;44:1362.
  • Macedo PB, Litovitz TA. On the relative roles of free volume and activation energy in the viscosity of liquids. J Chem Phys. 1965;42:245.
  • Hunter GL, Weeks ER. The physics of colloid glass transition. Rep Pro Phys. 2012;5:066501.
  • Arsalan F, Afshar OA, Milad AK, et al. Binary mutual diffusion coefficients of polymer/solvent systems using compressible regular solutions theory and free volume theory. J Non-Equilib Thermodyn. 2016;41:215.
  • Lui QL, Gao HQ. Prediction of mutual-diffusion coefficients in polymer solutions using a simple activity coefficient model. J Membr Sci. 2003;214:131–142.
  • Carnahan NF, Starling KE. Equation of state for nonattracting rigid spheres. J Chem Phys. 1969;51:635.
  • Yeh IC, Hummer G. System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions. J Phys Chem B. 2004;108:15873.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.