223
Views
7
CrossRef citations to date
0
Altmetric
Articles

Abraham model correlations for describing solute transfer processes into diethyl carbonate

, , , , , , , , , , & show all
Pages 26-39 | Received 03 Sep 2019, Accepted 29 Sep 2019, Published online: 08 Oct 2019

References

  • Fan F, Yuan H, Wu S, et al. Solubility measurement and molecular simulation of 1,1ʹ-binaphthyl-2,2ʹ-diyl hydrogenphosphate racemate and enantiomers in organic solvents with and without reverse micelles. J Chem Thermodyn. 2020;140:105905/1-105905/16.
  • Li Z, Wang Z, Li M, et al. Measurement and correlation of solubility of methyl gallate in nine pure and ethanol + n-propanol mixed solvents at temperatures within 293.15-333.15 K. J Mol Liq. 2019;293:111531/1-111531/9.
  • Wu K, Li Y. Solubility and solution thermodynamics of p-toluenesulfonamide in 16 solvents from T = 273.15 to 324.75 K. J Mol Liq. 2019;293:111577/1-111577/10.
  • Yang Z, Shao D, Zhou G. Analysis of solubility parameters of fenbendazole in pure and mixed solvents and evaluation of thermodynamic model. J Chem Thermodyn. 2020;140:105876/1-105876/7.
  • He Z, Zhang J, Gao X, et al. Solubility determination, correlation, and solute-solvent molecular interactions of 5-aminotetrazole in various pure solvents. J Chem Eng Data. 2019;64:3988-3993. DOI:10.1021/acs.jced.9b00385
  • Zou Z, Sun X, Yu Y, et al. Determination and correlation of solubility and solution thermodynamics of musk ketone in twelve pure solvents. J Mol Liq. 2019;293:111437/1-111437/10.
  • Zhang P, Wan Y, Zhang C, et al. Solubility and mixing thermodynamic properties of levamisole hydrochloride in twelve pure solvents at various temperatures. J Chem Thermodyn. 2019;139:105882/1-105882/10.
  • Huang C, Yun F, Yongmei X, et al. Correlation of solubility and solution thermodynamics of DL-malic acid in organic solvents at different temperatures. Russ J Phys Chem A. 2018;92:2710–2717.
  • Gong T, Han D, Chen Y, et al. Solubility and data correlation of isoniazid in different pure and binary mixed solvent systems from 283.15 K to 323.15 K. J Chem Eng Data. 2018;63:4767–4778.
  • Li S, Liu Y, Yin F, et al. Solubility measurement and thermodynamic properties of levetiracetam in pure and mixed solvents. J Chem Eng Data. 2018;63:4669–4681.
  • Shen J, Liang X, Lei H. Measurements, thermodynamic modeling, and a hydrogen bonding study on the solubilities of metoprolol succinate in organic solvents. Molecules. 2018;23:1–11.
  • Fan B, Li Q, Lu M, et al. Measurement and correlation of solubility of 3-hydroxy-2-naphthoic acid in ten pure and binary mixed organic solvents from T = (293.15 to 333.15 K). J Chem Eng Data. 2018;63:4459–4467.
  • Baluja S, Lava D, Hirpara A, et al. Thermodynamics of alloxan solubility in various solvents at different temperatures. Eur Chem Bull. 2017;6:206–210.
  • Ahmad A, Raish M, Alkharfy KM, et al. Solubility, solubility parameters and solution thermodynamics of thymoquinone in different mono solvents. J Mol Liq. 2018;272:912–918.
  • Asadzadeh B, Zhong J, Yan W. Solid-liquid equilibrium of rebaudioside A in pure and binary mixed solvents at T = (288.15 to 328.15) K. J Chem Eng Data. 2018;63:4269–4276.
  • Qian E, Gupta A, Neal R, et al. Abraham model correlations for describing solute transfer into 4-methyl-2-pentanol from both water and the gas phase. J Mol Liq. 2019;278:335–341.
  • Hart E, Jodray M, Rodriguez K, et al. Abraham model correlations for describing the solubilizing character of 3-methoxy-1-butanol and 1-tert-butoxy-2-propanol solvents. Phys Chem Liq. 2019;57:163–173.
  • Hart E, Klein A, Barrera M, et al. Development of Abraham model correlations for describing the transfer of molecular solutes into propanenitrile and butanenitrile from water and from the gas phase. Phys Chem Liq. 2018;56:821–833.
  • Tong X, Woods D, Acree WE Jr, et al. Updated Abraham model correlations for correlating solute transfer into dry butanone and dry cyclohexanone solvents. Phys Chem Liq. 2018;56:571–583.
  • Liu K, Wang S, Hart E, et al. Development of Abraham model correlations for solute transfer into 2-ethyl-1-hexanol from both water and the gas phase based on measured solubility ratios. Phys Chem Liq. 2019. Ahead of Print. DOI:10.1080/00319104.2018.1564306
  • Sedov IA, Salikov TM, Wadawadigi A, et al. Abraham model correlations for describing the thermodynamic properties of solute transfer into pentyl acetate based on headspace chromatographic and solubility measurements. J Chem Thermodyn. 2018;124:133–140.
  • Sedov IA, Magsumov TI, Hart E, et al. Abraham model expressions for describing water-to-diethylene glycol and gas-to-diethylene glycol solute transfer processes at 298.15 K. J Solut Chem. 2017;46:331–351.
  • Qian E, Gupta A, Neal R, et al. Development of Abraham model correlations for describing solute transfer into 2-methyl-1-butanol from both water and the gas phase from experimental solubility data for crystalline organic compounds. Phys Chem Liq. 2019. Ahead of Print. DOI:10.1080/00319104.2019.1625050
  • Fischer R, Jodray M, Qian E, et al. Abraham model correlations for solute transfer into benzyl alcohol from both water and the gas phase. Phys Chem Liq. 2018. Ahead of Print. DOI:10.1080/00319104.2018.1550778
  • Abraham MH. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem Soc Rev. 1993;22:73–83.
  • Abraham MH, Ibrahim A, Zissimos AM. Determination of sets of solute descriptors from chromatographic measurements. J Chromatog A. 2004;1037:29–47.
  • Abraham MH, Smith RE, Luchtefeld R, et al. Prediction of solubility of drugs and other compounds in organic solvents. J Pharm Sci. 2010;99:1500–1515.
  • Abraham MH, McGowan JC. The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia. 1987;23:243–246.
  • Endo S, Goss K-U. Applications of polyparameter linear free energy relationships in environmental chemistry. Environ Sci Technol. 2014;48:12477–12491.
  • Poole CF, Ariyasena TC, Lenca N. Estimation of the environmental properties of compounds from chromatographic measurements and the solvation parameter model. J Chromatogr A. 2013;1317:85–104.
  • Jalan A, Ashcraft RW, West RH, et al. Predicting solvation energies for kinetic modeling. Ann Rep Prog Chem Sect C Phys Chem. 2010;106:211–258.
  • Ulrich N, Endo S, Brown TN, et al. UFZ-LSER database v 3.2.1 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. 2017 [cited 2019 Aug 27]. Available from: http://www.ufz.de/lserd
  • Abraham MH, Acree WE Jr. Descriptors for ferrocene and some substituted ferrocenes. J Mol Liq. 2017;232:325–331.
  • Sedov IA, Salikov TM, Qian E, et al. Abraham model correlations for solute transfer into 2-methyl-2-butanol based on measured activity coefficient and solubility data at 298.15 K. J Mol Liq. 2019;293:111454/1-111454/10.
  • Abraham MH, Acree WE Jr. Gas-solvent and water-solvent partition of trans-stilbene at 298 K. J Mol Liq. 2017;238:58–61.
  • Abraham MH, Acree WE Jr. Equations for the partition of neutral molecules, ions and ionic species from water to water-methanol mixtures. J Solut Chem. 2016;45:861–874.
  • Abraham MH, Acree WE Jr. Equations for the partition of neutral molecules, ions and ionic species from water to water-ethanol mixtures. J Solut Chem. 2012;41:730–740.
  • Abraham MH, Acree WE Jr. Partition coefficients and solubilities of compounds in the water-ethanol solvent system. J Solut Chem. 2011;40:1279–1290.
  • Abraham MH, Acree WE Jr. The transfer of neutral molecules, ions and ionic species from water to ethylene glycol and to propylene carbonate; descriptors for pyridinium cations. New J Chem. 2010;34:2298–2305.
  • Logan ER, Tonita EM, Gering KL, et al. A study of the physical properties of li-ion battery electrolytes containing esters. J Electrochem Soc. 2018;165:A21–A30.
  • Zhang Y, Hu X-G, Zhang C-F. Effects of organic solvents on performance of Li-ion battery. Dianchi. 2004;34:30–32.
  • Bilgin M, Birman I. Separation of propionic acid by diethyl carbonate or diethyl malonate or diethyl fumarate and the synergistic effect of phosphorus compounds and amines. Fluid Phase Equilib. 2010;292:13–19.
  • Uslu H, Kirbaslar SI. Extraction of aqueous of malic acid by trioctylamine extractant in various diluents. Fluid Phase Equilib. 2010;287:134–140.
  • Uslu H, Kirbaslar SI. Purification of L-malic acid from aqueous solution by a method of reactive extraction. J Chem Eng Data. 2009;54:2819–2826.
  • Rasool MA, Pescarmona PP, Vankelecom IFJ. Applicability of organic carbonates as green solvents for membrane preparation. ACS Sustainable Chem Eng. 2019;7:13774–13785.
  • de la Iglesia O, Mainar AM, Pardo JI, et al. Solubilities of nonpolar gases in triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, dimethyl carbonate, and diethyl carbonate at 298.15 K and 101.33 kPa partial pressure of gas. J Chem Eng Data. 2003;48:657–661.
  • Read J, Mutolo K, Ervin M, et al. Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J Electrochem Soc. 2003;150:A1351–A1356.
  • Zhao Z, Xing X, Tang Z, et al. Solubility of CO2 and H2S in carbonates solvent: experiment and quantum chemistry calculation. Int J Greenhouse Gas Control. 2017;59:123–135.
  • Lopez ER, Mainar AM, Urieta JS, et al. Solubility of HFC134a (1,1,1,2-tetrafluoroethane) in two dialkyl carbonates. J Chem Eng Data. 2009;54:2609–2615.
  • Li W, Xuan A, Wu Y, et al. Measurement and correlation of solid-liquid equilibrium of diphenyl carbonate in ethanol-diethyl carbonate. Huagong Xuebao. 2009;60:1357–1361.
  • Cocero MJ, Gonzalez JA, Garcia I, et al. Excess Gibbs energy. Diethyl carbonate-hexane system. Int DATA Ser Sel Data Mix Ser A. 1991;19:132.
  • Cocero MJ, Gonzalez JA, Garcia I, et al. Excess Gibbs energy. Diethyl carbonate-octane system. Int DATA Ser Sel Data Mix Ser A. 1991;19:135.
  • Cocero MJ, Gonzalez JA, Garcia I, et al. Excess Gibbs energy. Diethyl carbonate-dodecane system. Int DATA Ser Sel Data Mix Ser A. 1991;19:138.
  • Cocero MJ, Gonzalez JA, Garcia I, et al. Excess Gibbs energy. Diethyl carbonate-cyclohexane system. Int DATA Ser Sel Data Mix Ser A. 1991;19:123.
  • Cocero MJ, Gonzalez JA, Garcia I, et al. Excess Gibbs energy. Diethyl carbonate-benzene system. Int DATA Ser Sel Data Mix Ser A. 1991;19:126.
  • Cocero MJ, Gonzalez JA, Garcia I, et al. Excess Gibbs energy. Tetrachloromethane-diethyl carbonate system. Int DATA Ser Sel Data Mix Ser A. 1991;19:129.
  • Francesconi R. Excess Gibbs energy. Diethyl carbonate - tert-butyl methyl ether system. Int DATA Ser Sel Data Mix Ser A. 1998;26:136.
  • Francesconi R, Ottani S, Comelli F. Excess Gibbs energy. Dimethyl carbonate-diethyl carbonate system. Int DATA Ser Sel Data Mix Ser A. 1997;25:211.
  • Comelli F, Francesconi R, Ottani S. Isothermal vapor-liquid equilibria of dimethyl carbonate + diethyl carbonate in the range (313.15 to 353.15) K. J Chem Eng Data. 1996;41:534–536.
  • Fritz JS, Lisicki NM. Titration of acids in nonaqueous solvents. Anal Chem. 1951;23:589–591.
  • Dabadge N, Tian A, Willis B, et al. Solubility of anthracene in binary ethylbenzene + alcohol solvent mixtures at 298.15 K. Phys Chem Liq. 2013;51:715–720.
  • Monarrez CI, Woo JH, Taylor PG, et al. Solubility in binary solvent mixtures: pyrene dissolved in alcohol + acetonitrile mixtures at 299.2 K. J Chem Eng Data. 2003;48:736–738.
  • Stovall DM, Givens C, Keown S, et al. Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 4-chloro-3-nitrobenzoic acid and 2-chloro- 5-nitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys Chem Liq. 2005;43:351–360.
  • Hoover KR, Stovall DM, Pustejovsky E, et al. Solubility of crystalline nonelectrolyte solutes in organic solvents - mathematical correlation of 2-methoxybenzoic acid and 4-methoxybenzoic acid solubilities with the Abraham solvation parameter model. Can J Chem. 2004;82:1353–1360.
  • Wilson A, Tian A, Chou V, et al. Experimental and predicted solubilities of 3,4-dichlorobenzoic acid in select organic solvents and in binary aqueous-ethanol mixtures. Phys Chem Liq. 2012;50:324–335.
  • Charlton AK, Daniels CR, Acree WE Jr, et al. Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of acetylsalicylic acid solubilities with the Abraham general solvation model. J Solut Chem. 2003;32:1087–1102.
  • Flanagan KB, Hoover KR, Garza O, et al. Mathematical correlation of 1-chloroanthraquinone solubilities in organic solvents with the Abraham solvation parameter model. Phys Chem Liq. 2006;44:377–386.
  • Daniels CR, Charlton AK, Wold RM, et al. Thermochemical behavior of dissolved carboxylic acid solutes: solubilities of 3-methylbenzoic acid and 4-chlorobenzoic acid in organic solvents. Can J Chem. 2003;81:1492–1501.
  • Hoover KR, Coaxum R, Pustejovsky E, et al. Thermochemical behavior of dissolved carboxylic acid solutes: part 4 - mathematical correlation of 4-nitrobenzoic acid solubilities with the Abraham solvation parameter model. Phys Chem Liq. 2004;42:339–347.
  • Coaxum R, Hoover KR, Pustejovsky E, et al. Thermochemical behavior of dissolved carboxylic acid solutes: part 3 - mathematical correlation of 2-methylbenzoic acid solubilities with the Abraham solvation parameter model. Phys Chem Liq. 2004;42:313–322.
  • Hoover KR, Acree WE Jr, Abraham MH. Mathematical correlation of phenothiazine solubilities in organic solvents with the Abraham solvation parameter model. Phys Chem Liq. 2006;44:367–376.
  • Acree WE Jr, Abraham MH. Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of benzil solubilities with the Abraham general solvation model. J Solution Chem. 2002;31:293–303.
  • Fletcher KA, Pandey S, McHale MER, et al. Solubility of benzil in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile theory. Phys Chem Liq. 1996;33:181–190.
  • Stephens TW, Loera M, Calderas M, et al. Determination of Abraham model solute descriptors for benzoin based on measured solubility ratios. Phys Chem Liq. 2012;50:254–265.
  • Blake-Taylor BH, Deleon VH, Acree WE Jr, et al. Mathematical correlation of salicylamide solubilities in organic solvents with the Abraham solvation parameter model. Phys Chem Liq. 2007;45:389–398.
  • Wang S, Liu K, Zhang A, et al. Solubility of 4-methyl-3-nitrobenzoic acid in organic mono-solvents: calculation of Abraham model solute descriptors. Phys Chem Liq. 2019; in press. DOI:10.1080/00319104.2019.1660982
  • Hart E, Lee G, Qian E, et al. Determination of Abraham model solute descriptors for 4-tert-butylbenzoic acid from experimental solubility data in organic mono-solvents. Phys Chem Liq. 2019;57:445–452.
  • Brumfield M, Wadawadigi A, Kuprasertkul N, et al. Determination of Abraham model solute descriptors for three dichloronitrobenzenes from measured solubilities in organic solvents. Phys Chem Liq. 2015;53:163–173.
  • Hart E, Klein A, Zha O, et al. Determination of Abraham model solute descriptors for monomeric 3,4,5-trimethoxybenzoic acid from experimental solubility data in organic solvents measured at 298.2 K. Phys Chem Liq. 2018;56:381–390.
  • Bowen KR, Stephens TW, Lu H, et al. Experimental and predicted solubilities of 3,4-dimethoxybenzoic acid in select organic solvents of varying polarity and hydrogen-bonding character. Eur Chem Bull. 2013;2:577–583.
  • De Fina KM, Sharp TL, Acree WE Jr. Solubility of biphenyl in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory. Can J Chem. 1999;77:1589–1593.
  • Abraham MH, Zissimos AM, Acree WE Jr. Partition of solutes from the gas phase and from water to wet and dry di-n-butyl ether: a linear free energy relationship analysis. Phys Chem Chem Phys. 2001;3:3732–3736.
  • Sprunger LM, Proctor A, Acree WE Jr, et al. Correlation and prediction of partition coefficient between the gas phase and water, and the solvents dry methyl acetate, dry and wet ethyl acetate, and dry and wet butyl acetate. Fluid Phase Equilib. 2008;270:30–44.
  • Abraham MH, Acree WE Jr, Leo AJ, et al. The partition of compounds from water and from air into wet and dry ketones. New J Chem. 2009;33:568–573.
  • Abraham MH, Acree WE Jr, Leo AJ, et al. Partition of compounds from water and from air into the wet and dry monohalobenzenes. New J Chem. 2009;33:1685–1692.
  • Abraham MH, Acree WE Jr, Cometto-Muniz JE. Partition of compounds from water and from air into amides. New J Chem. 2009;33:2034–2043.
  • Hart E, Grover D, Zettl H, et al. Abraham model enthalpy of solvation correlations for solutes dissolved in dimethyl carbonate and diethyl carbonate. Phys Chem Liq. 2015;53:732–747.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.