282
Views
5
CrossRef citations to date
0
Altmetric
Clinical Features - Original Research

Novel mutations of CLCN7 cause autosomal dominant osteopetrosis type II (ADOII) and intermediate autosomal recessive osteopetrosis (ARO) in seven Chinese families

, , , &
Pages 934-942 | Received 07 Jun 2017, Accepted 27 Sep 2017, Published online: 11 Oct 2017

References

  • Bollerslev J. Autosomal dominant osteopetrosis: bone metabolism and epidemiological, clinical, and hormonal aspects. Endocr Rev. 1989 Feb;10(1):45–67. DOI:10.1210/edrv-10-1-45. PubMed PMID: 2666111.
  • Benichou OD, Laredo JD, de Vernejoul MC. Type II autosomal dominant osteopetrosis (Albers-Schonberg disease): clinical and radiological manifestations in 42 patients. Bone. 2000 Jan;26(1):87–93. PubMed PMID: 10617161.
  • Kornak U, Kasper D, Bosl MR, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001 Jan 26;104(2):205–215. PubMed PMID: 11207362.
  • Cleiren E, Benichou O, Van Hul E, et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet. 2001 Dec 1;10(25):2861–2867. PubMed PMID: 11741829.
  • Stark Z, Savarirayan R. Osteopetrosis. Orphanet J Rare Dis. 2009;4:5. PubMed PMID: 19232111; PubMed Central PMCID: PMC2654865. DOI:10.1186/1750-1172-4-5
  • Frattini A, Orchard PJ, Sobacchi C, et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet. 2000 Jul;25(3):343–346. PubMed PMID: 10888887. DOI:10.1038/77131
  • Sobacchi C, Frattini A, Guerrini MM, et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet. 2007 Aug;39(8):960–962. PubMed PMID: 17632511. DOI:10.1038/ng2076
  • Guerrini MM, Sobacchi C, Cassani B, et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008 Jul;83(1):64–76. PubMed PMID: 18606301; PubMed Central PMCID: PMC2443850. DOI:10.1016/j.ajhg.2008.06.015
  • Van Wesenbeeck L, Odgren PR, Coxon FP, et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest. 2007 Apr;117(4):919–930. PubMed PMID: 17404618; PubMed Central PMCID: PMC1838941. DOI:10.1172/JCI30328
  • Chalhoub N, Benachenhou N, Rajapurohitam V, et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med. 2003 Apr;9(4):399–406. PubMed PMID: 12627228. DOI:10.1038/nm842
  • Pangrazio A, Fasth A, Sbardellati A, et al. SNX10 mutations define a subgroup of human autosomal recessive osteopetrosis with variable clinical severity. J Bone Miner Res. 2013 May;28(5):1041–1049. PubMed PMID: 23280965. DOI:10.1002/jbmr.1849
  • Del Fattore A, Fornari R, Van Wesenbeeck L, et al. A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts. J Bone Miner Res. 2008 Mar;23(3):380–391. PubMed PMID: 17997709. DOI:10.1359/jbmr.071107
  • Sobacchi C, Schulz A, Coxon FP, et al. Osteopetrosis: genetics, treatment and new insights into osteoclast function [Research Support, Non-U.S. Gov’tReview]. Nat Reviews Endocrinol. 2013 Sep;9(9):522–536. PubMed PMID: 23877423. DOI:10.1038/nrendo.2013.137
  • Bollerslev J. Osteopetrosis. A genetic and epidemiological study. Clin Genet. 1987 Feb;31(2):86–90. PubMed PMID: 3829443.
  • Johnston CC Jr., Lavy N, Lord T, et al. Osteopetrosis. A clinical, genetic, metabolic, and morphologic study of the dominantly inherited, benign form. Medicine (Baltimore). 1968 Mar;47(2):149–167. PubMed PMID: 4871758.
  • Poroca DR, Pelis RM, Chappe VM. ClC channels and transporters: structure, physiological functions, and implications in human chloride channelopathies. Front Pharmacol. 2017;8:151. PubMed PMID: 28386229; PubMed Central PMCID: PMCPMC5362633. DOI:10.3389/fphar.2017.00151
  • Zhang ZL, He JW, Zhang H, et al. Identification of the CLCN7 gene mutations in two Chinese families with autosomal dominant osteopetrosis (type II). J Bone Miner Metab. 2009;27(4):444–451. PubMed PMID: 19288050. DOI:10.1007/s00774-009-0051-0
  • Wang C, Zhang H, He JW, et al. The virulence gene and clinical phenotypes of osteopetrosis in the Chinese population: six novel mutations of the CLCN7 gene in twelve osteopetrosis families. J Bone Miner Metab. 2012 May;30(3):338–348. PubMed PMID: 21947783. DOI:10.1007/s00774-011-0319-z
  • Zheng H, Zhang Z, He JW, et al. Identification of two novel CLCN7 gene mutations in three Chinese families with autosomal dominant osteopetrosis type II. Joint Bone Spine. 2014 Mar;81(2):188–189. PubMed PMID: 23953223. DOI:10.1016/j.jbspin.2013.06.014
  • Zheng H, Shao C, Zheng Y, et al. Two novel mutations of CLCN7 gene in Chinese families with autosomal dominant osteopetrosis (type II). J Bone Miner Metab. 2016 Jul;34(4):440–446. PubMed PMID: 26056022. DOI:10.1007/s00774-015-0682-2
  • Wu CC, Econs MJ, DiMeglio LA, et al. Diagnosis and management of osteopetrosis: consensus guidelines from the osteopetrosis working group. J Clin Endocrinol Metab. 2017 Jun 26 PubMed PMID: 28655174. DOI:10.1210/jc.2017-01127.
  • Hu WW, Zhang Z, He JW, et al. Establishing reference intervals for bone turnover markers in the healthy shanghai population and the relationship with bone mineral density in postmenopausal women. Int J Endocrinol. 2013;2013:513925. PubMed PMID: 23533403; PubMed Central PMCID: PMC3600195. DOI:10.1155/2013/513925
  • Zhang H, He JW, Gao G, et al. Polymorphisms in the HOXD4 gene are not associated with peak bone mineral density in Chinese nuclear families. Acta Pharmacol Sin. 2010 Aug;31(8):977–983. PubMed PMID: 20686522; PubMed Central PMCID: PMCPMC4007810. DOI:10.1038/aps.2010.91
  • Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015 May;17(5):405–424. PubMed PMID: 25741868; PubMed Central PMCID: PMCPMC4544753. DOI:10.1038/gim.2015.30
  • Brandt S, Jentsch TJ. ClC-6 and ClC-7 are two novel broadly expressed members of the CLC chloride channel family. FEBS Lett. 1995 Dec 11;377(1):15–20. PubMed PMID: 8543009.
  • Campos-Xavier AB, Saraiva JM, Ribeiro LM, et al. Chloride channel 7 (CLCN7) gene mutations in intermediate autosomal recessive osteopetrosis. Hum Genet. 2003 Feb;112(2):186–189. PubMed PMID: 12522560. DOI:10.1007/s00439-002-0861-9
  • Waguespack SG, Hui SL, Dimeglio LA, et al. Autosomal dominant osteopetrosis: clinical severity and natural history of 94 subjects with a chloride channel 7 gene mutation. J Clin Endocrinol Metab. 2007 Mar;92(3):771–778. PubMed PMID: 17164308. DOI:10.1210/jc.2006-1986
  • Pangrazio A, Pusch M, Caldana E, et al. Molecular and clinical heterogeneity in CLCN7-dependent osteopetrosis: report of 20 novel mutations. Hum Mutat. 2010 Jan;31(1):E1071–80. PubMed PMID: 19953639. DOI:10.1002/humu.21167
  • Dutzler R, Campbell EB, Cadene M, et al. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature. 2002 Jan 17;415(6869):287–294. PubMed PMID: 11796999. DOI:10.1038/415287a
  • Schmidt-Rose T, Jentsch TJ. Reconstitution of functional voltage-gated chloride channels from complementary fragments of CLC-1. J Biol Chem. 1997 Aug 15;272(33):20515–20521. PubMed PMID: 9252364.
  • Maduke M, Williams C, Miller C. Formation of CLC-0 chloride channels from separated transmembrane and cytoplasmic domains. Biochemistry. 1998 Feb 3;37(5):1315–1321. doi:10.1021/bi972418o. PubMed PMID: 9477958.
  • Hryciw DH, Rychkov GY, Hughes BP, et al. Relevance of the D13 region to the function of the skeletal muscle chloride channel, ClC-1. J Biol Chem. 1998 Feb 20;273(8):4304–4307. PubMed PMID: 9468477.
  • Waguespack SG, Koller DL, White KE, et al. Chloride channel 7 (ClCN7) gene mutations and autosomal dominant osteopetrosis, type II. J Bone Miner Res. 2003 Aug;18(8):1513–1518. PubMed PMID: 12929941. DOI:10.1359/jbmr.2003.18.8.1513
  • Chu K, Koller DL, Snyder R, et al. Analysis of variation in expression of autosomal dominant osteopetrosis type 2: searching for modifier genes. Bone. 2005 Nov;37(5):655–661. PubMed PMID: 16120485. DOI:10.1016/j.bone.2005.06.003
  • Chu K, Snyder R, Econs MJ. Disease status in autosomal dominant osteopetrosis type 2 is determined by osteoclastic properties. J Bone Miner Res. 2006 Jul;21(7):1089–1097. DOI:10.1359/jbmr.060409. PubMed PMID: 16813529.
  • Pang Q, Chi Y, Zhao Z, et al. Novel mutations of CLCN7 cause autosomal dominant osteopetrosis type II (ADO-II) and intermediate autosomal recessive osteopetrosis (IARO) in Chinese patients. Osteoporos Int. 2016 Mar;27(3):1047–1055. PubMed PMID: 26395888. DOI:10.1007/s00198-015-3320-x
  • Frattini A, Pangrazio A, Susani L, et al. Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Mineral Res. 2003 Oct;18(10):1740–1747. PubMed PMID: WOS:000185718400003; English. DOI:10.1359/jbmr.2003.18.10.1740
  • Waguespack SG, Hui SL, White KE, et al. Measurement of tartrate-resistant acid phosphatase and the brain isoenzyme of creatine kinase accurately diagnoses type II autosomal dominant osteopetrosis but does not identify gene carriers. J Clin Endocrinol Metab. 2002 May;87(5):2212–2217. PubMed PMID: 11994366. DOI:10.1210/jcem.87.5.8497
  • Whyte MP, Kempa LG, McAlister WH, et al. Elevated serum lactate dehydrogenase isoenzymes and aspartate transaminase distinguish Albers-Schonberg disease (Chloride Channel 7 Deficiency Osteopetrosis) among the sclerosing bone disorders. J Bone Miner Res. 2010 Nov;25(11):2515–2526. PubMed PMID: 20499337. DOI:10.1002/jbmr.130
  • Bayer M. Reference values of osteocalcin and procollagen type I N-propeptide plasma levels in a healthy Central European population aged 0-18 years. Osteoporos Int. 2014 Feb;25(2):729–736. DOI:10.1007/s00198-013-2485-4. PubMed PMID: 23974858.
  • Callegari ET, Gorelik A, Garland SM, et al. Bone turnover marker reference intervals in young females. Ann Clin Biochem. 2016 Aug 5 PubMed PMID: 27496795. DOI:10.1177/0004563216665123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.