219
Views
7
CrossRef citations to date
0
Altmetric
Clinical focus: Diabetes - Original research

Serum electrolyte/metabolite abnormalities among patients with acute myocardial infarction: comparison between patients with and without diabetes mellitus

, &
Pages 395-403 | Received 08 Jun 2020, Accepted 03 Dec 2020, Published online: 24 Dec 2020

References

  • Malmberg K, Yusuf S, Gerstein HC, et al. Impact of diabetes on long-term prognosis in patients with unstable angina and Non–Q-wave myocardial infarction. Circulation. 2000;102(9):1014–1019.
  • Franklin K, Goldberg RJ, Spencer F, et al. Implications of diabetes in patients with acute coronary syndromes. The global registry of acute coronary events. Arch Internal Med. 2004;164(13):1457–1463.
  • Wali MV, Yatiraj S. Study of serum sodium and potassium in acute myocardial infarction. J Clin Diagn Res. 2014;8(11):CC07–09.
  • Oliver MF. Metabolic response during impending myocardial infarction. II. Clinical implications. Circulation. 1972;45(2):491–500.
  • Brown MJ, Brown DC, Murphy MB. Hypokalemia from beta2-receptor stimulation by circulating epinephrine. N Engl J Med. 1983;309(23):1414–1419.
  • Sekiyama H, Nagoshi T, Komukai K, et al. Transient decrease in serum potassium level during ischemic attack of acute coronary syndrome: paradoxical contribution of plasma glucose level and glycohemoglobin. Cardiovasc Diabetol. 2013;12:4.
  • Shiyovich A, Gilutz H, Plakht Y. Potassium fluctuations are associated with inhospital mortality from acute myocardial infarction. Soroka Acute Myocardial Infarction II (SAMI-II) Project. Angiology. 2018 Vol. 69(8) 709-717.
  • Ito S, Nagoshi T, Minai K, et al. Possible increase in insulin resistance and concealed glucose-coupled potassium-lowering mechanisms during acute coronary syndrome documented by covariance structure analysis. PloS One. 2017;12(4):e0176435.
  • Casiglia E, Tikhonoff V, Virdis A, et al. Serum uric acid and fatal myocardial infarction: detection of prognostic cut-off values: the URRAH (Uric Acid Right for Heart Health) study. J Hypertens. 2020;38(3):412–419.
  • Katz MA. Hyperglycemia-Induced Hyponatremia — calculation of expected serum sodium depression. N Engl J Med. 1973;289(16):843–844.
  • Al-Rubeaan K, Siddiqui K, Abu Risheh K, et al. Correlation between serum electrolytes and fasting glucose and Hb1Ac in Saudi diabetic patients. Biol Trace Elem Res. 2011;144(1–3):463–468.
  • Levy J, Stern Z, Gutman A, et al. Plasma calcium and phosphate levels in an adult noninsulin-dependent diabetic population. Calcif Tissue Int. 1986;39(5):316–318.
  • Wang S, Hou X, Liu Y, et al. Serum electrolyte levels in relation to macrovascular complications in Chinese patients with diabetes mellitus. Cardiovasc Diabetol. 2013;12:146.
  • Katsiki N, Papanas N, Fonseca VA, et al. Uric acid and diabetes: is there a link? Curr Pharm Des. 2013;19(27):4930–4937.
  • Desideri G, Virdis A, Casiglia E, et al. Exploration into uric and cardiovascular disease: Uric Acid Right for heArt Health (URRAH) project, a study protocol for a retrospective observational study. High Blood Press Cardiovasc Prev. 2018;25(2):197–202.
  • Rodriguez-Segade S, Rodriguez J, Mayan D, et al. Plasma albumin concentration is a predictor of HbA1c among type 2 diabetic patients, independently of fasting plasma glucose and fructosamine. Diabetes Care. 2005;28(2):437–439.
  • Cheng PC, Hsu SR, Cheng YC. Association between serum albumin concentration and ketosis risk in hospitalized individuals with type 2 diabetes mellitus. J Diabetes Res. 2016;2016:1269706.
  • Zhang J, Zhang R, Wang Y, et al. The level of serum albumin is associated with renal prognosis in patients with diabetic nephropathy. J Diabetes Res. 2019;2019:7825804.
  • Tessari P, Kiwanuka E, Millioni R, et al. Albumin and fibrinogen synthesis and insulin effect in type 2 diabetic patients with normoalbuminuria. Diabetes Care. 2006;29(2):323–328.
  • Kurtul A, Murat SN, Yarlioglues M, et al. Usefulness of serum albumin concentration to predict high coronary SYNTAX score and in-hospital mortality in patients with acute coronary syndrome. Angiology. 2016;67(1):34–40.
  • Plakht Y, Gilutz H, Shiyovich A. Decreased admission serum albumin level is an independent predictor of long-term mortality in hospital survivors of acute myocardial infarction. Soroka Acute Myocardial Infarction II (SAMI-II) project. Int J Cardiol. 2016;219:20–24.
  • Payne RB, Little AJ, Williams RB, et al. Interpretation of serum calcium in patients with abnormal serum proteins. Br Med J. 1973;4(5893):643–646.
  • Rousan TA, Pappy RM, Chen AY, et al. Impact of diabetes mellitus on clinical characteristics, management, and in-hospital outcomes in patients with acute myocardial infarction (from the NCDR). Am J Cardiol. 2014;114(8):1136–1144.
  • Goldberg A, Hammerman H, Petcherski S, et al. Hyponatremia and long-term mortality in survivors of acute ST-elevation myocardial infarction. Arch Internal Med. 2006;166(7):781–786.
  • Goldberg A, Hammerman H, Petcherski S, et al. Prognostic importance of hyponatremia in acute ST-elevation myocardial infarction. Am J Med. 2004;117(4):242–248.
  • Havranek S, Belohlavek J, Skulec R, et al. Long-term prognostic impact of hyponatremia in the ST-elevation myocardial infarction. Scand J Clin Lab Invest. 2011;71(1):38–44.
  • Klopotowski M, Kruk M, Przyluski J, et al. Sodium level on admission and in-hospital outcomes of STEMI patients treated with primary angioplasty: the ANIN Myocardial Infarction Registry. Med Sci Monit. 2009;15(9):CR477–483.
  • Tada Y, Nakamura T, Funayama H, et al. Early development of hyponatremia implicates short- and long-term outcomes in ST-elevation acute myocardial infarction. Circ J. 2011;75(8):1927–1933.
  • Tang Q, Hua Q. Relationship between hyponatremia and in-hospital outcomes in Chinese patients with ST-elevation myocardial infarction. Intern Med. 2011;50(9):969–974.
  • Singla I, Zahid M, Good CB, et al. Effect of hyponatremia (<135 mEq/L) on outcome in patients with non-ST-elevation acute coronary syndrome. Am J Cardiol. 2007;100(3):406–408.
  • Saito T, Ishikawa S, Higashiyama M, et al. Inverse distribution of serum sodium and potassium in uncontrolled inpatients with diabetes mellitus. Endocr J. 1999;46(1):75–80.
  • Plakht Y, Gilutz H, Shiyovich A. The association of concomitant serum potassium and glucose levels and in-hospital mortality in patients with acute myocardial infarction (AMI). Soroka acute myocardial infarction II (SAMI-II) project. Int J Cardiol. 2019;287 (2019) 39–45.
  • Krishnan E, Pandya BJ, Chung L, et al. Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol. 2012;176(2):108–116.
  • von Lueder TG, Girerd N, Atar D, et al. Serum uric acid is associated with mortality and heart failure hospitalizations in patients with complicated myocardial infarction: findings from the High-Risk Myocardial Infarction Database Initiative. Eur J Heart Fail. 2015;17(11):1144–1151.
  • Trkulja V, Car S. On-admission serum uric acid predicts outcomes after acute myocardial infarction: systematic review and meta-analysis of prognostic studies. Croat Med J. 2012;53(2):162–172.
  • Ranjith N, Myeni NN, Sartorius B, et al. Association between hyperuricemia and major adverse cardiac events in patients with acute myocardial infarction. Metab Syndr Relat Disord. 2017;15(1):18–25.
  • Shiyovich A, Gilutz H, Plakht Y. Serum potassium levels and long-term post-discharge mortality in acute myocardial infarction. Int J Cardiol. 2014;172(2):e368–370.
  • Goyal A, Spertus JA, Gosch K, et al. Serum potassium levels and mortality in acute myocardial infarction. Jama. 2012;307(2):157–164.
  • Uluganyan M, Ekmekci A, Murat A, et al. Admission serum potassium level is associated with in-hospital and long-term mortality in ST-elevation myocardial infarction. Anatol J Cardiol. 2016 Apr; 16(4): 302.
  • Choi JS, Kim YA, Kim HY, et al. Relation of serum potassium level to long-term outcomes in patients with acute myocardial infarction. Am J Cardiol. 2014;113(8):1285–1290.
  • Honda T, Fujimoto K, Miyao Y, et al. Potassium concentration on admission is an independent risk factor for target lesion revascularization in acute myocardial infarction. ScientificWorldJournal. 2014;2014:946803.
  • Peng Y, Huang FY, Liu W, et al. Relation between admission serum potassium levels and long-term mortality in acute coronary syndrome. Intern Emerg Med. 2015;10(8):927–935.
  • Shiyovich A, Plakht Y. MyoK+ardial infarction: potassium levels and outcomes following acute myocardial infarction. Angiology. 2016 Vol. 67(8) 725-728.
  • Shlomai G, Berkovitch A, Pinchevski-Kadir S, et al. The association between normal-range admission potassium levels in Israeli patients with acute coronary syndrome and early and late outcomes. Medicine (Baltimore). 2016;95(23):e3778.
  • Kosiborod M, Rathore SS, Inzucchi SE, et al. Admission glucose and mortality in elderly patients hospitalized with acute myocardial infarction: implications for patients with and without recognized diabetes. Circulation. 2005;111(23):3078–3086.
  • Capes SE, Hunt D, Malmberg K, et al. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet. 2000;355(9206):773–778.
  • Goyal A, Mahaffey KW, Garg J, et al. Prognostic significance of the change in glucose level in the first 24 h after acute myocardial infarction: results from the CARDINAL study. Eur Heart J. 2006;27(11):1289–1297.
  • Goyal A, Mehta SR, Diaz R, et al. Differential clinical outcomes associated with hypoglycemia and hyperglycemia in acute myocardial infarction. Circulation. 2009;120(24):2429–2437.
  • Foo K, Sekhri N, Deaner A, et al. Effect of diabetes on serum potassium concentrations in acute coronary syndromes. Heart. 2003;89(1):31–35.
  • Pham PC, Pham PM, Pham SV, et al. Hypomagnesemia in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2007;2(2):366–373.
  • Sotirakopoulos N, Kalogiannidou I, Tersi M, et al. Acid-base and electrolyte disorders in patients with diabetes mellitus. Saudi J Kidney Dis Transpl. 2012;23(1):58–62.
  • Facchini F, Chen YD, Hollenbeck CB, et al. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. Jama. 1991;266(21):3008–3011.
  • Sharaf El Din UAA, Salem MM, Abdulazim DO. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: A review. J Adv Res. 2017;8(5):537–548.
  • Liu P, Wang H, Zhang F, et al. The effects of allopurinol on the carotid intima-media thickness in patients with type 2 diabetes and asymptomatic hyperuricemia: a three-year randomized parallel-controlled study. Intern Med. 2015;54(17):2129–2137.
  • Liu P, Chen Y, Wang B, et al. Allopurinol treatment improves renal function in patients with type 2 diabetes and asymptomatic hyperuricemia: 3-year randomized parallel-controlled study. Clin Endocrinol (Oxf). 2015;83(4):475–482.
  • Zhang W, Iso H, Murakami Y, et al. Serum Uric Acid and Mortality Form Cardiovascular Disease: EPOCH-JAPAN study. J Atheroscler Thromb. 2016;23(6):692–703.
  • Jorde R, Sundsfjord J, Fitzgerald P, et al. Serum calcium and cardiovascular risk factors and diseases: the Tromso study. Hypertens. 1999;34(3):484–490.
  • Lind L, Jakobsson S, Lithell H, et al. Relation of serum calcium concentration to metabolic risk factors for cardiovascular disease. BMJ (Clin Res Ed). 1988;297(6654):960–963.
  • Lind L, Skarfors E, Berglund L, et al. Serum calcium: a new, independent, prospective risk factor for myocardial infarction in middle-aged men followed for 18 years. J Clin Epidemiol. 1997;50(8):967–973.
  • Williams DM, Fraser A, Lawlor DA. Associations of vitamin D, parathyroid hormone and calcium with cardiovascular risk factors in US adolescents. Heart. 2011;97(4):315–320.
  • Jorde R, Sundsfjord J, Bonaa KH. Determinants of serum calcium in men and women. The Tromso Study. Eur J Epidemiol. 2001;17(12):1117–1123.
  • Lu X, Wang Y, Meng H, et al. Association of admission serum calcium levels and in-hospital mortality in patients with acute ST-elevated myocardial infarction: an eight-year, single-center study in China. PloS One. 2014;9(6):e99895.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.