1,102
Views
13
CrossRef citations to date
0
Altmetric
Clinical focus: Multimodal Analgesia - Review

Neuropharmacological basis for multimodal analgesia in chronic pain

ORCID Icon & ORCID Icon
Pages 245-259 | Received 11 Mar 2021, Accepted 22 Sep 2021, Published online: 28 Oct 2021

References

  • Gilron I, Jensen TS, Dickenson AH. Combination pharmacotherapy for management of chronic pain: from bench to bedside. Lancet Neurol. 2013 Nov;12(11):1084–1095.
  • Gilron I, Max MB. Combination pharmacotherapy for neuropathic pain: current evidence and future directions. Expert Rev Neurother. 2005 Nov;5(6):823–830.
  • Diener HC, Förderreuther S, Gaul C, et al. Prevention of migraine with monoclonal antibodies against CGRP or the CGRP receptor: addition to the S1 guideline: therapy of migraine attacks and prevention of migraine. Recommendations of the German Society of Neurology and the German Migraine and Headache Society. Neurol Res Pract. 2020;2:11.
  • Oliveira CB, Maher CG, Pinto RZ, et al. Clinical practice guidelines for the management of non-specific low back pain in primary care: an updated overview. Eur Spine J. 2018 Nov;27(11):2791–2803.
  • Hochberg MC, Altman RD, April KT, et al. American college of rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken). 2012 Apr;64(4):465–474.
  • Häuser W, Thieme K, Turk DC. Guidelines on the management of fibromyalgia syndrome – a systematic review. Eur J pain. 2010;14(1):5–10.
  • Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009 Sep;10(9):895–926.
  • Ossipov MH, Morimura K, Porreca F. Descending pain modulation and chronification of pain. Curr Opin Support Palliat Care. Jun 2014;8(2):143–151.
  • Marchand F, Perretti M, McMahon SB. Role of the immune system in chronic pain. Nat Rev Neurosci. 2005 Jul;6(7):521–532.
  • Colloca L, Ludman T, Bouhassira D, et al. Neuropathic pain. Nat Rev Dis Primers. 2017;3:17002.
  • Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015 Feb;14(2):162–173.
  • Finnerup NB, Sindrup SH, Jensen TS. The evidence for pharmacological treatment of neuropathic pain. Pain. 2010 Sep;150(3):573–581.
  • Baron R, Maier C, Attal N, et al. Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. Pain. 2017 Feb;158(2):261–272.
  • Chaparro LE, Wiffen PJ, Moore RA, et al. Combination pharmacotherapy for the treatment of neuropathic pain in adults. Cochrane Database Syst Rev. 2012 Jul 11;2012(7):Cd008943.
  • Dib-Hajj SD, Cummins TR, Black JA, et al. Sodium channels in normal and pathological pain. Annu Rev Neurosci. 2010;33:325–347.
  • Cox JJ, Reimann F, Nicholas AK, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature. 2006 Dec 14;444(7121):894–898.
  • Meier T, Wasner G, Faust M, et al. Efficacy of lidocaine patch 5% in the treatment of focal peripheral neuropathic pain syndromes: a randomized, double-blind, placebo-controlled study. Pain. 2003 Nov;106(1–2):151–158.
  • Li Y, Dorsi MJ, Meyer RA, et al. Mechanical hyperalgesia after an L5 spinal nerve lesion in the rat is not dependent on input from injured nerve fibers. Pain. 2000 Apr;85(3):493–502.
  • Yoon YW, Na HS, Chung JM. Contributions of injured and intact afferents to neuropathic pain in an experimental rat model. Pain. 1996 Jan;64(1):27–36.
  • Ma C, Shu Y, Zheng Z, et al. Similar electrophysiological changes in axotomized and neighboring intact dorsal root ganglion neurons. J Neurophysiol. 2003 Mar;89(3):1588–1602.
  • Black JA, Cummins TR, Plumpton C, et al. Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons. J Neurophysiol. 1999 Nov;82(5):2776–2785.
  • Hains BC, Saab CY, Klein JP, et al. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci. 2004 May 19;24(20):4832–4839.
  • Zhao P, Waxman SG, Hains BC. Sodium channel expression in the ventral posterolateral nucleus of the thalamus after peripheral nerve injury. Mol Pain. 2006 Aug 17;2: 27.
  • Decosterd I, Ji RR, Abdi S, et al. The pattern of expression of the voltage-gated sodium channels Na(v)1.8 and Na(v)1.9 does not change in uninjured primary sensory neurons in experimental neuropathic pain models. Pain. 2002 Apr;96(3):269–277.
  • Gold MS, Weinreich D, Kim C-S, et al. Redistribution of NaV1.8 in uninjured axons enables neuropathic pain. J Neurosci. 2003;23(1):158–166.
  • Kim CH, Oh Y, Chung JM, et al. Changes in three subtypes of tetrodotoxin sensitive sodium channel expression in the axotomized dorsal root ganglion in the rat. Neurosci Lett. 2002 Apr 26;323(2):125–128.
  • Boucher TJ, Okuse K, Bennett DL, et al. Potent analgesic effects of GDNF in neuropathic pain states. Science. 2000 Oct 6;290(5489):124–127.
  • Wu G, Ringkamp M, Hartke TV, et al. Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers. J Neurosci. 2001 Apr 15;21(8):RC140.
  • Cruccu G, Gronseth G, Alksne J, et al. AAN-EFNS guidelines on trigeminal neuralgia management. Eur J Neurol. 2008 Oct;15(10):1013–1028.
  • Demant DT, Lund K, Vollert J, et al. The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: a randomised, double-blind, placebo-controlled phenotype-stratified study. Pain. 2014 Nov;155(11):2263–2273.
  • Patel R, Kucharczyk M, Montagut-Bordas C, et al. Neuropathy following spinal nerve injury shares features with the irritable nociceptor phenotype: a back-translational study of oxcarbazepine. Eur J Pain. 2019 Jan;23(1):183–197.
  • Burchiel KJ. Carbamazepine inhibits spontaneous activity in experimental neuromas. Exp Neurol. 1988 Nov;102(2):249–253.
  • Koplovitch P, Devor M. Dilute lidocaine suppresses ectopic neuropathic discharge in dorsal root ganglia without blocking axonal propagation: a new approach to selective pain control. Pain. 2018 Jul;159(7):1244–1256.
  • Cardenas CA, Cardenas CG, de Armendi AJ, et al. Carbamazepine interacts with a slow inactivation state of NaV1.8-like sodium channels. Neurosci Lett. 2006 Nov 13;408(2):129–134.
  • Rowbotham MC, Fields HL. Post-herpetic neuralgia: the relation of pain complaint, sensory disturbance, and skin temperature. Pain. 1989 Nov;39(2):129–144.
  • Carmland ME, Kreutzfeldt M, Holbech JV, et al. Effect of lacosamide in peripheral neuropathic pain: study protocol for a randomized, placebo-controlled, phenotype-stratified trial. Trials. 2019 Oct 11;20(1):588.
  • Blesneac I, Themistocleous AC, Fratter C, et al. Rare NaV1.7 variants associated with painful diabetic peripheral neuropathy. Pain. 2018 Mar;159(3):469–480.
  • BTA DG, Hoeijmakers JGJ, Geerts M, et al. Lacosamide in patients with Nav1.7 mutations-related small fibre neuropathy: a randomized controlled trial. Brain. 2019 Feb 1;142(2):263–275.
  • Namer B, Schmidt D, Eberhardt E, et al. Pain relief in a neuropathy patient by lacosamide: proof of principle of clinical translation from patient-specific iPS cell-derived nociceptors. EBioMedicine. 2019Jan;39:401–408.
  • O’Neill J, Brock C, Olesen AE, et al. Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol Rev. 2012 Oct;64(4):939–971.
  • Blair HA. Capsaicin 8% dermal patch: a review inPain PN. Drugs. Sep 2018;78(14):1489–1500
  • Christensen JD, Lo Vecchio S, Andersen HH, et al. Effect of Topical analgesia on desensitization following 8% topical capsaicin application. J Pain. 2021 Jan 30;22: 778–788.
  • Gustorff B, Poole C, Kloimstein H, et al. Treatment of neuropathic pain with the capsaicin 8% patch: quantitative sensory testing (QST) in a prospective observational study identifies potential predictors of response to capsaicin 8% patch treatment. Scand J Pain. 2013 Jul 1;4(3):138–145.
  • Mainka T, Malewicz NM, Baron R, et al. Presence of hyperalgesia predicts analgesic efficacy of topically applied capsaicin 8% in patients with peripheral neuropathic pain. Eur J Pain. 2016 Jan;20(1):116–129.
  • Wise BL, Seidel MF, Lane NE. The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol. 2021 Jan;17(1):34–46.
  • Einarsdottir E, Carlsson A, Minde J, et al. A mutation in the nerve growth factor beta gene (NGFB) causes loss of pain perception. Hum Mol Genet. 2004 Apr 15;13(8):799–805.
  • Indo Y, Tsuruta M, Hayashida Y, et al. Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat Genet. 1996 Aug;13(4):485–488.
  • Petty BG, Cornblath DR, Adornato BT, et al. The effect of systemically administered recombinant human nerve growth factor in healthy human subjects. Ann Neurol. 1994 Aug;36(2):244–246.
  • Shu X, Mendell LM. Acute sensitization by NGF of the response of small-diameter sensory neurons to capsaicin. J Neurophysiol. 2001 Dec;86(6):2931–2938.
  • Zhang X, Huang J, McNaughton PA. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J. 2005 Dec 21;24(24):4211–4223.
  • Denk F, Bennett DL, McMahon SB, et al. Nerve growth factor and pain mechanisms. Annu Rev Neurosci. 2017 Jul 25;40(1):307–325.
  • Mantyh WG, Jimenez-Andrade JM, Stake JI, et al. Blockade of nerve sprouting and neuroma formation markedly attenuates the development of late stage cancer pain. Neuroscience. 2010 Dec 1;171(2):588–598.
  • Aloe L, Tuveri MA, Carcassi U, et al. Nerve growth factor in the synovial fluid of patients with chronic arthritis. Arthritis Rheumatism. 1992 Mar;35(3):351–355.
  • Schnitzer TJ, Marks JA. A systematic review of the efficacy and general safety of antibodies to NGF in the treatment of OA of the hip or knee. Osteoarthritis Cartilage. 2015 Jan;23(Suppl 1):S8–17.
  • Melo-Carrillo A, Strassman AM, Schain AJ, et al. Combined onabotulinumtoxinA/atogepant treatment blocks activation/sensitization of high-threshold and wide-dynamic range neurons. Cephalalgia: An International Journal of Headache. 2021 Jan;41(1):17–32.
  • Bingham S, Beswick PJ, Blum DE, et al. The role of the cylooxygenase pathway in nociception and pain. Semin Cell Dev Biol. 2006 Oct;17(5):544–554.
  • Fehrenbacher JC, Burkey TH, Nicol GD, et al. Tumor necrosis factor alpha and interleukin-1beta stimulate the expression of cyclooxygenase II but do not alter prostaglandin E2 receptor mRNA levels in cultured dorsal root ganglia cells. Pain. 2005 Jan;113(1–2):113–122.
  • Narumiya S, Sugimoto Y, Ushikubi F. Prostanoid receptors: structures, properties, and functions. Physiol Rev. 1999 Oct;79(4):1193–1226.
  • Moriyama T, Higashi T, Togashi K, et al. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain. 2005;1:3.
  • Caterina MJ, Leffler A, Malmberg AB, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000 Apr 14;288(5464):306–313.
  • Sekiguchi F, Aoki Y, Nakagawa M, et al. AKAP-dependent sensitization of Ca(v) 3.2 channels via the EP(4) receptor/cAMP pathway mediates PGE(2) -induced mechanical hyperalgesia. Br J Pharmacol. 2013 Feb;168(3):734–745.
  • Emery EC, Young GT, Berrocoso EM, et al. HCN2 ion channels play a central role in inflammatory and neuropathic pain. Science. 2011 Sep 9;333(6048):1462–1466.
  • Gold MS, Levine JD, Correa AM. Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J Neurosci. 1998 Dec 15;18(24):10345–10355.
  • Namer B, Schick M, Kleggetveit IP, et al. Differential sensitization of silent nociceptors to low pH stimulation by prostaglandin E2 in human volunteers. Eur J Pain. 2015 Feb;19(2):159–166.
  • Eisenach JC, Curry R, Tong C, et al. Effects of intrathecal ketorolac on human experimental pain. Anesthesiology. 2010 May;112(5):1216–1224.
  • Baba H, Kohno T, Moore KA, et al. Direct activation of rat spinal dorsal horn neurons by prostaglandin E2. J Neurosci. 2001 Mar 1;21(5):1750–1756.
  • Harvey RJ, Depner UB, Wassle H, et al. GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science. 2004 May 7;304(5672):884–887.
  • Sikandar S, Patel R, Patel S, et al. Genes, molecules and patients–emerging topics to guide clinical pain research. Eur J Pharmacol. 2013 Sep 15;716(1–3):188–202.
  • Opioid Receptors SC. Opioid receptors. Annu Rev Med. 2016;67(1):433–451.
  • Nockemann D, Rouault M, Labuz D, et al. The K(+) channel GIRK2 is both necessary and sufficient for peripheral opioid-mediated analgesia. EMBO Mol Med. 2013 Aug;5(8):1263–1277.
  • Gold MS, Levine JD. DAMGO inhibits prostaglandin E2-induced potentiation of a TTX-resistant Na+ current in rat sensory neurons in vitro. Neurosci Lett. 1996 Jul 12;212(2):83–86.
  • Bourinet E, Soong TW, Stea A, et al. Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1486–1491.
  • Ingram SL, Williams JT. Opioid inhibition of Ih via adenylyl cyclase. Neuron. 1994 Jul;13(1):179–186.
  • Lutz PE, Kieffer BL. Opioid receptors: distinct roles in mood disorders. Trends Neurosci. 2013 Mar;36(3):195–206.
  • Abbadie C, Pasternak GW, Aicher SA. Presynaptic localization of the carboxy-terminus epitopes of the mu opioid receptor splice variants MOR-1C and MOR-1D in the superficial laminae of the rat spinal cord. Neuroscience. 2001/10/31/ 2001;106(4):833–842.
  • Kondo I, Marvizon JC, Song B, et al. Inhibition by spinal mu- and delta-opioid agonists of afferent-evoked substance P release. J Neurosci. 2005 Apr 6;25(14):3651–3660.
  • Dickenson AH, Sullivan AF. Electrophysiological studies on the effects of intrathecal morphine on nociceptive neurones in the rat dorsal horn. Pain. 1986 Feb;24(2):211–222.
  • Kemp T, Spike RC, Watt C, et al. The mu-opioid receptor (MOR1) is mainly restricted to neurons that do not contain GABA or glycine in the superficial dorsal horn of the rat spinal cord. Neuroscience. 1996 Dec;75(4):1231–1238.
  • Dickenson AH, Oliveras J-L, Besson J-M. Role of the nucleus raphe magnus in opiate analgesia as studied by the microinjection technique in the rat. Brain Res. 1979/07/06/1979;170(1):95–111.
  • Heinricher MM, Morgan MM, Tortorici V, et al. Disinhibition of off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla. Neuroscience. 1994/11/01/1994;63(1):279–288.
  • Navratilova E, Nation K, Remeniuk B, et al. Selective modulation of tonic aversive qualities of neuropathic pain by morphine in the central nucleus of the amygdala requires endogenous opioid signaling in the anterior cingulate cortex. Pain. 2020 Mar;161(3):609–618.
  • Navratilova E, Xie JY, Meske D, et al. Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. J Neurosci. 2015 May 6;35(18):7264–7271.
  • Dickenson AH, Navratilova E, Patel R, et al. Supraspinal opioid circuits differentially modulate spinal neuronal responses in neuropathic rats. Anesthesiology. 2020 Apr;132(4):881–894.
  • Gomtsian L, Bannister K, Eyde N, et al. Morphine effects within the rodent anterior cingulate cortex and rostral ventromedial medulla reveal separable modulation of affective and sensory qualities of acute or chronic pain. Pain. 2018 Dec;159(12):2512–2521.
  • Mousa SA, Cheppudira BP, Shaqura M, et al. Nerve growth factor governs the enhanced ability of opioids to suppress inflammatory pain. Brain. 2007 Feb;130(Pt 2):502–513.
  • Jeanjean AP, Moussaoui SM, Maloteaux JM, et al. Interleukin-1β induces long-term increase of axonally transported opiate receptors and substance P. Neuroscience. 1995/09/01/ 1995;68(1):151–157.
  • Zollner C, Shaqura MA, Bopaiah CP, et al. Painful inflammation-induced increase in mu-opioid receptor binding and G-protein coupling in primary afferent neurons. Mol Pharmacol. 2003 Aug;64(2):202–210.
  • Weibel R, Reiss D, Karchewski L, et al. Mu opioid receptors on primary afferent nav1.8 neurons contribute to opiate-induced analgesia: insight from conditional knockout mice. PLoS One. 2013;8(9):e74706.
  • Suzuki R, Chapman V, Dickenson AH. The effectiveness of spinal and systemic morphine on rat dorsal horn neuronal responses in the spinal nerve ligation model of neuropathic pain. Pain. 1999 Mar;80(1–2):215–228.
  • Lee CY, Perez FM, Wang W, et al. Dynamic temporal and spatial regulation of mu opioid receptor expression in primary afferent neurons following spinal nerve injury. Eur J Pain. 2011 Aug;15(7):669–675.
  • Williams JT, Ingram SL, Henderson G, et al. Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev. 2013 Jan;65(1):223–254.
  • Nichols ML, Bian D, Ossipov MH, et al. Regulation of morphine antiallodynic efficacy by cholecystokinin in a model of neuropathic pain in rats. J Pharmacol Exp Ther. 1995 Dec;275(3):1339–1345.
  • Xie JY, Herman DS, Stiller CO, et al. Cholecystokinin in the rostral ventromedial medulla mediates opioid-induced hyperalgesia and antinociceptive tolerance. J Neurosci. 2005 Jan 12;25(2):409–416.
  • Chapman V, Dickenson AH. The combination of NMDA antagonism and morphine produces profound antinociception in the rat dorsal horn. Brain Res. 1992 Feb 28;573(2):321–323.
  • Cizkova D, Marsala J, Lukacova N, et al. Localization of N-type Ca2+ channels in the rat spinal cord following chronic constrictive nerve injury. Exp Brain Res. 2002 Dec;147(4):456–463.
  • Kolosov A, Aurini L, Williams ED, et al. Intravenous injection of leconotide, an omega conotoxin: synergistic antihyperalgesic effects with morphine in a rat model of bone cancer pain. Pain Med. 2011 Jun;12(6):923–941.
  • Max MB, Culnane M, Schafer SC, et al. Amitriptyline relieves diabetic neuropathy pain in patients with normal or depressed mood. Neurology. 1987 Apr;37(4):589–596.
  • Matsuoka H, Suto T, Saito S, et al. Amitriptyline, but not pregabalin, reverses the attenuation of noxious stimulus-induced analgesia after nerve injury in rats. Anesth Analg. 2016 Aug;123(2):504–510.
  • Ito S, Suto T, Saito S, et al. Repeated administration of duloxetine suppresses neuropathic pain by accumulating effects of noradrenaline in the spinal cord. Anesth Analg. 2018 Jan;126(1):298–307.
  • Yarnitsky D, Granot M, Nahman-Averbuch H, et al. Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain. 2012 Jun;153(6):1193–1198.
  • Alba-Delgado C, Mico JA, Sanchez-Blazquez P, et al. Analgesic antidepressants promote the responsiveness of locus coeruleus neurons to noxious stimulation: implications for neuropathic pain. Pain. 2012 Jul;153(7):1438–1449.
  • Bantel C, Eisenach JC, Duflo F, et al. Spinal nerve ligation increases alpha2-adrenergic receptor G-protein coupling in the spinal cord. Brain Res. 2005 Mar 15;1038(1):76–82.
  • Birder LA, Perl ER. Expression of alpha2-adrenergic receptors in rat primary afferent neurones after peripheral nerve injury or inflammation. J Physiol. 1999 Mar 1;515(Pt 2):533–542.
  • Eisenach JC, DuPen S, Dubois M, et al. Epidural clonidine study g. epidural clonidine analgesia for intractable cancer pain. the epidural clonidine study group. Pain. 1995 Jun;61(3):391–399.
  • Benbouzid M, Choucair-Jaafar N, Yalcin I, et al. Chronic, but not acute, tricyclic antidepressant treatment alleviates neuropathic allodynia after sciatic nerve cuffing in mice. Eur J Pain. 2008 Nov;12(8):1008–1017.
  • Wattiez AS, Libert F, Privat AM, et al. Evidence for a differential opioidergic involvement in the analgesic effect of antidepressants: prediction for efficacy in animal models of neuropathic pain? Br J Pharmacol. 2011 Jun;163(4):792–803.
  • Eisenach J, Md G. G, PhD. intrathecal amitriptyline acts as an n-methyl-d-aspartate receptor antagonist in the presence of inflammatory hyperalgesia in rats. Anesthesiol J Am Soc Anesthesiologists. 1995;83(5):1046–1054.
  • Sada H, Egashira N, Ushio S, et al. Repeated administration of amitriptyline reduces oxaliplatin-induced mechanical allodynia in rats. J Pharmacol Sci. 2012;118(4):547–551.
  • Esser MJ, Chase T, Allen GV, et al. Chronic administration of amitriptyline and caffeine in a rat model of neuropathic pain: multiple interactions. Eur J Pharmacol. 2001 Nov 2;430(2–3):211–218.
  • Sawynok J, Reid AR, Esser MJ. Peripheral antinociceptive action of amitriptyline in the rat formalin test: involvement of adenosine. Pain. 1999 Mar;80(1–2):45–55.
  • Dick IE, Brochu RM, Purohit Y, et al. Sodium channel blockade may contribute to the analgesic efficacy of antidepressants. J Pain. 2007 Apr;8(4):315–324.
  • Horishita T, Yanagihara N, Ueno S, et al. Antidepressants inhibit Nav1.3, Nav1.7, and Nav1.8 neuronal voltage-gated sodium channels more potently than Nav1.2 and Nav1.6 channels expressed in xenopus oocytes. Naunyn Schmiedebergs Arch Pharmacol. 2017 Dec;390(12):1255–1270.
  • Bohren Y, Tessier LH, Megat S, et al. Antidepressants suppress neuropathic pain by a peripheral beta2-adrenoceptor mediated anti-TNFalpha mechanism. Neurobiol Dis. 2013Dec;60:39–50.
  • Kremer M, Yalcin I, Goumon Y, et al. A dual noradrenergic mechanism for the relief of neuropathic allodynia by the antidepressant drugs duloxetine and amitriptyline. J Neurosci. 2018 Nov 14;38(46):9934–9954.
  • Sud R, Spengler RN, Nader ND, et al. Antinociception occurs with a reversal in alpha 2-adrenoceptor regulation of TNF production by peripheral monocytes/macrophages from pro- to anti-inflammatory. Eur J Pharmacol. 2008 Jul 7;588(2–3):217–231.
  • Bouhassira D, Wilhelm S, Schacht A, et al. Neuropathic pain phenotyping as a predictor of treatment response in painful diabetic neuropathy: data from the randomized, double-blind, COMBO-DN study. Pain. 2014 Oct;155(10):2171–2179.
  • Holbech JV, Bach FW, Finnerup NB, et al. Pain phenotype as a predictor for drug response in painful polyneuropathy-a retrospective analysis of data from controlled clinical trials. Pain. 2016 Jun;157(6):1305–1313.
  • Matsuoka H, Iwase S, Miyaji T, et al. Predictors of duloxetine response in patients with neuropathic cancer pain: a secondary analysis of a randomized controlled trial-JORTC-PAL08 (DIRECT) study. Support Care Cancer. 2020 Jun;28(6):2931–2939.
  • Yucel A, Ozyalcin S, Koknel Talu G, et al. The effect of venlafaxine on ongoing and experimentally induced pain in neuropathic pain patients: a double blind, placebo controlled study. Eur J Pain. 2005 Aug;9(4):407–416.
  • Bannister K, Patel R, Goncalves L, et al. Diffuse noxious inhibitory controls and nerve injury: restoring an imbalance between descending monoamine inhibitions and facilitations. Pain. 2015 Sep;156(9):1803–1811.
  • Tzschentke TM, Christoph T, Kogel BY. The mu-opioid receptor agonist/noradrenaline reuptake inhibition (MOR-NRI) concept in analgesia: the case of tapentadol. CNS Drugs. 2014 Apr;28(4):319–329.
  • Gilron I, Tu D, Holden RR, et al. Combination of morphine with nortriptyline for neuropathic pain. Pain. 2015 Aug;156(8):1440–1448.
  • Khoromi S, Cui L, Nackers L, et al. Morphine, nortriptyline and their combination vs. placebo in patients with chronic lumbar root pain. Pain. 2007 Jul;130(1–2):66–75.
  • Mercadante S, Arcuri E, Tirelli W, et al. Amitriptyline in neuropathic cancer pain in patients on morphine therapy: a randomized placebo-controlled, double-blind crossover study. Tumori. 2002 May-Jun;88(3):239–242.
  • Schroder W, Tzschentke TM, Terlinden R, et al. Synergistic interaction between the two mechanisms of action of tapentadol in analgesia. J Pharmacol Exp Ther. 2011 Apr;337(1):312–320.
  • Bee LA, Bannister K, Rahman W, et al. Mu-opioid and noradrenergic alpha(2)-adrenoceptor contributions to the effects of tapentadol on spinal electrophysiological measures of nociception in nerve-injured rats. Pain. 2011 Jan;152(1):131–139.
  • Schroder W, Vry JD, Tzschentke TM, et al. Differential contribution of opioid and noradrenergic mechanisms of tapentadol in rat models of nociceptive and neuropathic pain. Eur J Pain. 2010 Sep;14(8):814–821.
  • Niesters M, Proto PL, Aarts L, et al. Tapentadol potentiates descending pain inhibition in chronic pain patients with diabetic polyneuropathy. Br J Anaesth. 2014 Jul;113(1):148–156.
  • van de Donk T, van Velzen M, Dahan A, et al. Cornea nerve fibre state determines analgesic response to tapentadol in fibromyalgia patients without effective endogenous pain modulation. Eur J Pain. 2019 Oct;23(9):1586–1595.
  • van de Donk T, van Cosburgh J, van Dasselaar T, et al. Tapentadol treatment results in long-term pain relief in patients with chronic low back pain and associates with reduced segmental sensitization. Pain Rep. 2020;5(6):e877. Nov-Dec.
  • Patel R, Bauer CS, Nieto-Rostro M, et al. alpha2delta-1 gene deletion affects somatosensory neuron function and delays mechanical hypersensitivity in response to peripheral nerve damage. J Neurosci. 2013 Oct 16;33(42):16412–16426.
  • Field MJ, Cox PJ, Stott E, et al. Identification of the α2-δ-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc Nat Acad Sci. 2006;103(46):17537–17542.
  • Hendrich J, Van Minh AT, Heblich F, et al. Pharmacological disruption of calcium channel trafficking by the alpha2delta ligand gabapentin. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3628–3633.
  • Tran-Van-Minh A, Dolphin AC. The alpha2delta ligand gabapentin inhibits the Rab11-dependent recycling of the calcium channel subunit alpha2delta-2. J Neurosci. 2010 Sep 22;30(38):12856–12867.
  • Bauer CS, Nieto-Rostro M, Rahman W, et al. The increased trafficking of the calcium channel subunit alpha2delta-1 to presynaptic terminals in neuropathic pain is inhibited by the alpha2delta ligand pregabalin. J Neurosci. 2009 Apr 1;29(13):4076–4088.
  • Patel R, Dickenson AH. Mechanisms of the gabapentinoids and alpha 2 delta-1 calcium channel subunit in neuropathic pain. Pharmacol Res Perspect. 2016 Apr;4(2):e00205.
  • Gottrup H, Juhl G, Kristensen AD, et al. Chronic oral gabapentin reduces elements of central sensitization in human experimental hyperalgesia. Anesthesiology. 2004 Dec;101(6):1400–1408.
  • Iannetti GD, Zambreanu L, Wise RG, et al. Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18195–18200.
  • Luo ZD, Chaplan SR, Higuera ES, et al. Upregulation of dorsal root ganglion α2δ calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J Neurosci. 2001;21(6):1868–1875.
  • Li CY, Zhang XL, Matthews EA, et al. Calcium channel alpha2delta1 subunit mediates spinal hyperexcitability in pain modulation. Pain. 2006 Nov;125(1–2):20–34.
  • Bannister K, Qu C, Navratilova E, et al. Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain. Pain. 2017 Dec;158(12):2386–2395.
  • Patel R, Dickenson AH. Neuronal hyperexcitability in the ventral posterior thalamus of neuropathic rats: modality selective effects of pregabalin. J Neurophysiol. 2016 Jul 1;116(1):159–170.
  • Juarez-Salinas DL, Braz JM, Hamel KA, et al. Pain relief by supraspinal gabapentin requires descending noradrenergic inhibitory controls. Pain Rep. 2018 Jul-Aug;3(4):e659.
  • Tanabe M, Takasu K, Kasuya N, et al. Role of descending noradrenergic system and spinal alpha2-adrenergic receptors in the effects of gabapentin on thermal and mechanical nociception after partial nerve injury in the mouse. Br J Pharmacol. 2005 Mar;144(5):703–714.
  • Bouwense SA, Olesen SS, Drewes AM, et al. Effects of pregabalin on central sensitization in patients with chronic pancreatitis in a randomized, controlled trial. PLoS One. 2012;7(8):e42096.
  • Bee LA, Dickenson AH. Descending facilitation from the brainstem determines behavioural and neuronal hypersensitivity following nerve injury and efficacy of pregabalin. Pain. 2008 Nov 15;140(1):209–223.
  • Suzuki R, Rahman W, Rygh LJ, et al. Spinal-supraspinal serotonergic circuits regulating neuropathic pain and its treatment with gabapentin. Pain. 2005 Oct;117(3):292–303.
  • Chen J, Li L, Chen SR, et al. The alpha2delta-1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions. Cell Rep. 2018 Feb 27;22(9):2307–2321.
  • Dickenson AH, Sullivan AF. Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurones following C fibre stimulation. Neuropharmacology. 1987 Aug;26(8):1235–1238.
  • Price DD, Mao J, Frenk H, et al. The N-methyl-D-aspartate receptor antagonist dextromethorphan selectively reduces temporal summation of second pain in man. Pain. 1994 Nov;59(2):165–174.
  • Rasmussen PV, Sindrup SH, Jensen TS, et al. Therapeutic outcome in neuropathic pain: relationship to evidence of nervous system lesion. Eur J Neurol. 2004 Aug;11(8):545–553.
  • Simpson DM, Schifitto G, Clifford DB, et al. Pregabalin for painful HIV neuropathy: a randomized, double-blind, placebo-controlled trial. Neurology. 2010 Feb 2;74(5):413–420.
  • Lana B, Schlick B, Martin S, et al. Differential upregulation in DRG neurons of an alpha2delta-1 splice variant with a lower affinity for gabapentin after peripheral sensory nerve injury. Pain. 2014 Mar;155(3):522–533.
  • Attal N, Brasseur L, Parker F, et al. Effects of gabapentin on the different components of peripheral and central neuropathic pain syndromes: a pilot study. Eur Neurol. 1998 Nov;40(4):191–200.
  • Westermann A, Krumova EK, Pennekamp W, et al. Different underlying pain mechanisms despite identical pain characteristics: a case report of a patient with spinal cord injury. Pain. 2012 Jul;153(7):1537–1540.
  • Gilron I, Bailey JM, Tu D, et al. Nortriptyline and gabapentin, alone and in combination for neuropathic pain: a double-blind, randomised controlled crossover trial. Lancet. 2009 Oct 10;374(9697):1252–1261.
  • Tesfaye S, Wilhelm S, Lledo A, et al. Duloxetine and pregabalin: high-dose monotherapy or their combination? The “COMBO-DN study”–a multinational, randomized, double-blind, parallel-group study in patients with diabetic peripheral neuropathic pain. Pain. 2013 Dec;154(12):2616–2625.
  • Marchettini P, Wilhelm S, Petto H, et al. Are there different predictors of analgesic response between antidepressants and anticonvulsants in painful diabetic neuropathy? Eur J Pain. 2016 Mar;20(3):472–482.
  • Ohtori S, Inoue G, Orita S, et al. Efficacy of combination of meloxicam and pregabalin for pain in knee osteoarthritis. Yonsei Med J. 2013 Sep;54(5):1253–1258.
  • Romanò CL, Romanò D, Bonora C, et al. Pregabalin, celecoxib, and their combination for treatment of chronic low-back pain. J Orthop Traumatol. 2009 Dec;10(4):185–191.
  • Verret M, Lauzier F, Zarychanski R, et al. Perioperative use of gabapentinoids for the management of postoperative acute pain: a systematic review and meta-analysis. Anesthesiology. 2020 Aug;133(2):265–279.
  • Aasvang EK, Gmaehle E, Hansen JB, et al. Predictive risk factors for persistent postherniotomy pain. Anesthesiology. 2010 Apr;112(4):957–969.
  • Brinck EC, Tiippana E, Heesen M, et al. Perioperative intravenous ketamine for acute postoperative pain in adults. Cochrane Database Syst Rev. 2018 Dec 20;12(12):CD012033.
  • De Koninck Y, Henry JL. Substance P-mediated slow excitatory postsynaptic potential elicited in dorsal horn neurons in vivo by noxious stimulation. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11344–11348.
  • Guo W, Zou S, Guan Y, et al. Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord during the development and maintenance of inflammatory hyperalgesia. J Neurosci. 2002 Jul 15;22(14):6208–6217.
  • Li J, Simone DA, Larson AA. Windup leads to characteristics of central sensitization. Pain. 1999 Jan;79(1):75–82.
  • Bosma RL, Cheng JC, Rogachov A, et al. Brain dynamics and temporal summation of pain predicts neuropathic pain relief from ketamine Infusion. Anesthesiology. 2018 Nov;129(5):1015–1024.
  • Dickenson AH, Patel R. Translational issues in precision medicine in neuropathic pain. Can J Pain. 2020;4(1):30–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.