386
Views
7
CrossRef citations to date
0
Altmetric
Infectious disease

Vitamin D and COVID-19: where are we now?

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 195-207 | Received 12 Aug 2021, Accepted 09 Dec 2021, Published online: 27 Dec 2021

References

  • Costa de Lucena TMC, Da Silva Santos AF, de Lima BR, et al. Mechanism of inflammatory response in associated comorbidities in COVID-19. Diabetes Metab Syndr Clin Res Rev. 2020;14(4):597–600.
  • Mathur R, Rentsch CT, Morton CE, et al. Ethnic differences in SARS-CoV-2 infection and COVID-19-related hospitalisation, intensive care unit admission, and death in 17 million adults in England: an observational cohort study using the OpenSAFELY platform. Lancet. 2021;397(10286):1711–1724.
  • Meltzer DO, Best TJ, Zhang H, et al. Association of vitamin D levels, race/ ethnicity, and clinical characteristics with COVID-19 test results. AMA Netw Open. 2021;4(3):1–18.
  • Mauvais-Jarvis F. Aging, male sex, obesity, and metabolic inflammation create the perfect storm for COVID-19. Diabetes. 2020;69(9):1857–1863.
  • Tal Y, Adini A, Eran A, et al. Racial disparity in Covid-19 mortality rates - A plausible explanation. Clin Immunol. 2020;217:108481.
  • Cozier YC, Castro-Webb N, Hochberg NS, et al. Lower serum 25(OH)D levels associated with higher risk of COVID-19 infection in U.S. Black women. Laganà AS, editor. PLOS ONE. 2021;16(7):e0255132.
  • García LF. Immune response, inflammation, and the clinical spectrum of COVID-19. Front Immunol. 2020;11:1441.
  • Weiskopf D, Schmitz KS, Raadsen MP, et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol. 2020;5(48):eabd2071.
  • Cannell JJ, Vieth R, Umhau JC, et al. Epidemic influenza and vitamin D. Epidemiol Infect. 2006;134(6):1129–1140.
  • Vo P, Koppel C, Espinola JA, et al. Vitamin D status at the time of hospitalization for bronchiolitis and its association with disease severity. J Pediatr. 2018;203:416–422.e1.
  • Monlezun D, Bittner E, Christopher K, et al. Vitamin D status and acute respiratory infection: cross sectional results from the United States National Health And Nutrition Examination Survey, 2001–2006. Nutrients. 2015;7(3):1933–1944.
  • Martineau AR, Jolliffe DA, Greenberg L, et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol Assess. 2019;23(2):1–44.
  • Jolliffe DA, Camargo CA, Sluyter JD, et al. Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021;9(5):276–292.
  • Dancer RCA, Parekh D, Lax S, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax. 2015;70(7):617–624.
  • Qu G, Li X, Hu L, et al. An imperative need for research on the role of environmental factors in transmission of novel Coronavirus (COVID-19). Environ Sci Technol. 2020;54(7):3730–3732.
  • Qayyum S, Mohammad T, Slominski RM, et al. Vitamin D and lumisterol novel metabolites can inhibit SARS-CoV-2 replication machinery enzymes. Am J Physiol - Endocrinol Metab. 2021;321(2):E246–51.
  • Song Y, Qayyum S, Greer RA, et al. Vitamin D3 and its hydroxyderivatives as promising drugs against COVID-19: a computational study. J Biomol Struct Dyn. 2021;1–17.
  • Bouillon R. Vitamin D: from photosynthesis, metabolism and action to clinical applications. In: Jameson JL, De Groot LJ, editors. Endocrinology. 6th ed. Philadelphia: PA: Saunders Elsevier; 2010. p. 1089–1110.
  • Holick MF. Vitamin D: a millenium perspective. J Cell Biochem. 2003;88(2):296–307.
  • Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004;80(6):1678S–1688S.
  • Rosen CJ, Adams JS, Bikle DD, et al. The Nonskeletal effects of vitamin D: an endocrine society scientific statement. Endocr Rev. 2012;33(3):456–492.
  • Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319–329.
  • Hossein-nezhad A, Holick MF. Vitamin D for health: a global perspective. Mayo Clin Proc. 2013;88(7):720–755.
  • Slominski AT, Kim T-K, Shehabi HZ, et al. In vivo evidence for a novel pathway of vitamin D₃ metabolism initiated by P450scc and modified by CYP27B1. FASEB J Off Publ Fed Am Soc Exp Biol. 2012;26(9):3901–3915.
  • Slominski AT, Kim T-K, Shehabi HZ, et al. In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland. Mol Cell Endocrinol. 2014;383(1–2):181–192.
  • Slominski AT, Li W, Kim T-K, et al. Novel activities of CYP11A1 and their potential physiological significance. J Steroid Biochem Mol Biol. 2015;151:25–37.
  • Slominski AT, Kim T-K, Li W, et al. Detection of novel CYP11A1-derived secosteroids in the human epidermis and serum and pig adrenal gland. Sci Rep. 2015;5:14875.
  • Slominski AT, Chaiprasongsuk A, Janjetovic Z, et al. Photoprotective properties of vitamin D and Lumisterol Hydroxyderivatives. Cell Biochem Biophys. 2020;78(2):165–180.
  • Pike JW, Meyer MB. The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-Dihydroxyvitamin D3. Endocrinol Metab Clin North Am. 2010;39(2):255–269.
  • Kato S. The function of vitamin D receptor in vitamin D action. J Biochem (Tokyo). 2000;127(5):717–722.
  • Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr. 2008;88(2):491S–499S.
  • Slominski AT, Kim T-K, Takeda Y, et al. RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D. FASEB J Off Publ Fed Am Soc Exp Biol. 2014;28(7):2775–2789.
  • Slominski AT, Kim T-K, Janjetovic Z, et al. Differential and overlapping effects of 20,23(OH)₂D3 and 1,25(OH)₂D3 on gene expression in human epidermal keratinocytes: identification of AhR as an alternative receptor for 20,23(OH)₂D3. Int J Mol Sci. 2018;19(10):E3072.
  • Feldman D, Krishnan A, Swami, S, et al. Vitamin D. Fourth. Osteoporosis; 2013. Available from: https://www.elsevier.com/books/osteoporosis/marcus/978-0-12-415853-5.
  • Dong X, Craig T, Xing N, et al. Direct transcriptional regulation of RelB by 1α,25-Dihydroxyvitamin D3 and its analogs. J Biol Chem. 2003;278(49):49378–49385.
  • Griffin MD, Dong X, Kumar R. Vitamin D receptor-mediated suppression of RelB in antigen presenting cells: a paradigm for ligand-augmented negative transcriptional regulation. Arch Biochem Biophys. 2007;460(2):218–226.
  • Pinette K, Yee Y, Amegadzie B, et al. Vitamin D receptor as a drug discovery target. Mini-Rev Med Chem. 2003;3(3):193–204.
  • Selvaraj P Vitamins and the immune system. Vitamin D Receptor, and Cathelicidin in the treatment of tuberculosis. Vitamins & Hormones; 2011.
  • Alroy I, Towers TL, Freedman LP. Transcriptional repression of the interleukin-2 gene by vitamin D3: direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor. Mol Cell Biol. 1995;15(10):5789–5799.
  • Harant H, Andrew PJ, Reddy GS, et al. 1alpha,25-Dihydroxyvitamin D3 and a variety of its natural metabolites transcriptionally repress nuclear-factor-kappaB-mediated Interleukin-8 gene expression. Eur J Biochem. 1997;250(1):63–71.
  • Slominski AT, Kim T-K, Qayyum S, et al. Vitamin D and lumisterol derivatives can act on liver X receptors (LXRs). Sci Rep. 2021;11(1):8002.
  • Ballatori N, Krance SM, Notenboom S, et al. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem. 2009;390(3). DOI:10.1515/BC.2009.033.
  • Parsanathan R, Jain SK. Glutathione deficiency induces epigenetic alterations of vitamin D metabolism genes in the livers of high-fat diet-fed obese mice. Sci Rep. 2019;9(1):14784.
  • Jain SK, Parsanathan R, Achari AE, et al. Glutathione stimulates vitamin D regulatory and glucose-metabolism genes, lowers oxidative stress and inflammation, and increases 25-hydroxy-vitamin D levels in blood: a novel approach to treat 25-hydroxyvitamin D deficiency. Antioxid Redox Signal. 2018;29(17):1792–1807.
  • Jain SK, Micinski D. Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem Biophys Res Commun. 2013;437(1):7–11.
  • Jain SK, Parsanathan R, Levine SN, et al. The potential link between inherited G6PD deficiency, oxidative stress, and vitamin D deficiency and the racial inequities in mortality associated with COVID-19. Free Radic Biol Med. 2020;161:84–91.
  • Rezaei R, Aslani S, Marashi M, et al. Immunomodulatory effects of vitamin D in influenza infection. Curr Immunol Rev. 2018;14(1):40–49.
  • Di Rosa M, Malaguarnera M, Nicoletti F, et al. Vitamin D3: a helpful immuno-modulator: vitamin D3 as immuno-modulator. Immunology. 2011;134(2):123–139.
  • Prietl B, Treiber G, Pieber T, et al. Vitamin D and immune function. Nutrients. 2013;5(7):2502–2521.
  • Mohan M, Cherian JJ, Sharma A. Exploring links between vitamin D deficiency and COVID-19. Chowdhary A, editor. PLOS Pathog. 2020;16(9):e1008874.
  • Chu C-M. Initial viral load and the outcomes of SARS. Can Med Assoc J. 2004;171(11):1349–1352.
  • Kohlmeier JE, Cookenham T, Roberts AD, et al. Type I interferons regulate cytolytic activity of memory CD8+ T cells in the lung airways during respiratory virus challenge. Immunity. 2010;33(1):96–105.
  • Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19(2):181–193.
  • Zhao J, Zhao J, Perlman S. T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J Virol. 2010;84(18):9318–9325.
  • Bilezikian JP, Bikle D, Hewison M, et al. Mechanisms in endocrinology: vitamin D and COVID-19. Eur J Endocrinol. 2020;183(5):R133–47.
  • Slominski AT, Slominski RM, Goepfert PA, et al. Reply to Jakovac and to Rocha et al.: can vitamin D prevent or manage COVID-19 illness? Am J Physiol - Endocrinol Metab. 2020;319(2):E455–7.
  • Chaiprasongsuk A, Janjetovic Z, Kim T-K, et al. CYP11A1-derived vitamin D3 products protect against UVB-induced inflammation and promote keratinocytes differentiation. Free Radic Biol Med. 2020;155:87–98.
  • Chaiprasongsuk A, Janjetovic Z, Kim T-K, et al. Protective effects of novel derivatives of vitamin D3 and lumisterol against UVB-induced damage in human keratinocytes involve activation of Nrf2 and p53 defense mechanisms. Redox Biol. 2019;24:101206.
  • Jassil NK, Sharma A, Bikle D, et al. Vitamin D binding protein and 25-hydroxyvitamin D levels: emerging clinical applications. Endocr Pract. 2017;23(5):605–613.
  • Chun RF, Lauridsen AL, Suon L, et al. Vitamin D-binding protein directs monocyte responses to 25-hydroxy- and 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab. 2010;95(7):3368–3376.
  • Walls AC, Park Y-J, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292.e6.
  • Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017;125:21–38.
  • Patel VB, Zhong J-C, Grant MB, et al. Role of the ACE2/angiotensin 1–7 axis of the renin–angiotensin system in heart failure. Circ Res. 2016;118(8):1313–1326.
  • Turner AJ, Hiscox JA, Hooper NM. ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol Sci. 2004;25(6):291–294.
  • Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417(6891):822–828.
  • Imai Y, Kuba K, Ohto-Nakanishi T, et al. Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circ J. 2010;74(3):405–410.
  • Annweiler G, Corvaisier M, Gautier J, et al. Vitamin D supplementation associated to better survival in hospitalized frail elderly COVID-19 patients: the GERIA-COVID Quasi-experimental study. Nutrients. 2020;12(11):3377.
  • Lee C. Therapeutic modulation of virus-induced oxidative stress via the Nrf2-dependent antioxidative pathway. Oxid Med Cell Longev. 2018;2018:6208067.
  • Hanff TC, Harhay MO, Brown TS, et al. Is there an association between COVID-19 mortality and the renin-angiotensin system? A call for epidemiologic investigations. Clin Infect Dis. 2020;71(15):870–874.
  • Xu J, Yang J, Chen J, et al. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol Med Rep. 2017;16(5):7432–7438.
  • Quesada-Gomez JM, Entrenas-Castillo M, Bouillon R. Vitamin D receptor stimulation to reduce acute respiratory distress syndrome (ARDS) in patients with coronavirus SARS-CoV-2 infections. J Steroid Biochem Mol Biol. 2020;202:105719.
  • Slominski RM, Stefan J, Athar M, et al. COVID-19 and Vitamin D: a lesson from the skin. Exp Dermatol. 2020;29(9):885–890.
  • D’Avolio A, Avataneo V, Manca A, et al. 25-hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients. 2020;12(5):1359.
  • Boccardi V, Lapenna M, Gaggi L, et al. Hypovitaminosis D: a disease marker in hospitalized very old persons at risk of malnutrition. Nutrients. 2019;11(1):128.
  • Ünsal YA, Öö G, Cander S, et al. Retrospective analysis of vitamin D status on ınflammatory markers and course of the disease in patients with COVID-19 infection. J Endocrinol Invest. 2021;44(12):2601–2607. s40618-021-01566-9.
  • Baktash V, Hosack T, Patel N, et al. Vitamin D status and outcomes for hospitalised older patients with COVID-19. Postgrad Med J. 2020: postgradmedj-2020-138712. DOI:10.1136/postgradmedj-2020-138712.
  • Panagiotou G, Tee SA, Ihsan Y, et al. Low serum 25‐hydroxyvitamin D (25[OH]D) levels in patients hospitalized with COVID‐19 are associated with greater disease severity. Clin Endocrinol (Oxf). 2020;93(4):508–511.
  • Radujkovic A, Hippchen T, Tiwari-Heckler S, et al. Vitamin D deficiency and outcome of COVID-19 patients. Nutrients. 2020;12(9):2757.
  • Im JH, Je YS, Baek J, et al. Nutritional status of patients with COVID-19. Int J Infect Dis. 2020;100:390–393.
  • Hernández JL, Nan D, Fernandez-Ayala M, et al. Vitamin D status in hospitalized patients with SARS-CoV-2 infection. J Clin Endocrinol Metab. 2021;106(3):e1343–53.
  • Ilie PC, Stefanescu S, Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin Exp Res. 2020;32(7):1195–1198.
  • Lanham-New SA, Webb AR, Cashman KD, et al. Vitamin D and SARS-CoV-2 virus/COVID-19 disease. BMJ Nutr Prev Health. 2020;3(1):106–110.
  • Marik PE, Kory P, Varon J. Does vitamin D status impact mortality from SARS-CoV-2 infection? Med Drug Discov. 2020;6:100041.
  • Whittemore PB. COVID-19 fatalities, latitude, sunlight, and vitamin D. Am J Infect Control. 2020;48(9):1042–1044.
  • Alguwaihes AM, Sabico S, Hasanato R, et al. Severe vitamin D deficiency is not related to SARS-CoV-2 infection but may increase mortality risk in hospitalized adults: a retrospective case–control study in an Arab Gulf country. Aging Clin Exp Res. 2021;33(5):1415–1422.
  • Hastie CE, Mackay DF, Ho F, et al. Corrigendum to “Vitamin D concentrations and COVID-19 infection in UK Biobank.” Diabetes Metab Syndr Clin Res Rev. septiembre de 2020;14(5):1315–1316.
  • Zelzer S, Prüller F, Curcic P, et al. Vitamin D metabolites and clinical outcome in hospitalized COVID-19 patients. Nutrients. 2021;13(7):2129.
  • Pereira M, Dantas Damascena A, Galvão Azevedo LM, et al. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2020:1–9. DOI:10.1080/10408398.2020.1841090.
  • Bassatne A, Basbous M, Chakhtoura M, et al. The link between COVID-19 and vitamin D (VIVID): a systematic review and meta-analysis. Metabolism. 2021;119:154753.
  • Mukherjee S, Pahan K. Is COVID-19 Gender-sensitive? J Neuroimmune Pharmacol. 2021;16(1):38–47.
  • Jolliffe DA, Greiller CL, Mein CA, et al. Vitamin D receptor genotype influences risk of upper respiratory infection. Br J Nutr. 2018;120(8):891–900.
  • Karcioglu Batur L, Hekim N. The role of DBP gene polymorphisms in the prevalence of new coronavirus disease 2019 infection and mortality rate. J Med Virol. 2021;93(3):1409–1413.
  • Grant W, Lahore H, McDonnell S, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12(4):988.
  • Formenti AM, Tecilazich F, Frara S, et al. Body mass index predicts resistance to active vitamin D in patients with hypoparathyroidism. Endocrine. 2019;66(3):699–700.
  • Isaia G, Giorgino R, Rini GB, et al. Prevalence of hypovitaminosis D in elderly women in Italy: clinical consequences and risk factors. Osteoporos Int. 2003;14(7):577–582.
  • Griffin G, Hewison M, Hopkin J, et al. Vitamin D and COVID-19: evidence and recommendations for supplementation. R Soc Open Sci. 2020;7(12):201912.
  • Munshi R, Hussein MH, Toraih EA, et al. Vitamin D insufficiency as a potential culprit in critical COVID-19 patients. J Med Virol. 2021;93(2):733–740.
  • Zhang Y-P, Wan Y-D, Sun T-W, et al. Association between vitamin D deficiency and mortality in critically ill adult patients: a meta-analysis of cohort studies. Crit Care. 2014;18(6):684.
  • Amrein K, Schnedl C, Holl A, et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA. 2014;312(15):1520.
  • Annweiler C, Hanotte B, Grandin de L’eprevier C, et al. Vitamin D and survival in COVID-19 patients: a quasi-experimental study. J Steroid Biochem Mol Biol. 2020;204:105771.
  • Fasano A, Cereda E, Barichella M, et al. COVID-19 in Parkinson’s disease patients living in Lombardy, Italy. Mov Disord. 2020;35(7):1089–1093.
  • Tan CW, Ho LP, Kalimuddin S, et al. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition. 2020;79-80:111017.
  • Entrenas Castillo M, Entrenas Costa LM, Vaquero Barrios JM, et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: a pilot randomized clinical study. J Steroid Biochem Mol Biol. 2020;203:105751.
  • Ohaegbulam KC, Swalih M, Patel P, et al. Vitamin D Supplementation in COVID-19 patients: a clinical case series. Am J Ther. 2020;27(5):e485–90.
  • Oristrell J, Oliva JC, Casado E, et al. Vitamin D supplementation and COVID-19 risk: a population-based, cohort study. J Endocrinol Invest. 2021: s40618-021-01639-9. DOI:10.1007/s40618-021-01639-9.
  • Nogues X, Ovejero D, Pineda-Moncusí M, et al. Calcifediol treatment and COVID-19–related outcomes. J Clin Endocrinol Metab. 2021;106(10):e4017–27.
  • Alcala-Diaz JF, Limia-Perez L, Gomez-Huelgas R, et al. Calcifediol treatment and hospital mortality due to COVID-19: a cohort study. Nutrients. 2021;13(6):1760.
  • Jain SK, Parsanathan R. Can vitamin D and L-cysteine co-supplementation reduce 25(OH)-vitamin D deficiency and the mortality associated with COVID-19 in African Americans? J Am Coll Nutr. 2020;39(8):694–699.
  • Jain SK, Micinski D, Parsanathan R. L-cysteine stimulates the effect of vitamin D on inhibition of oxidative stress, IL-8, and MCP- 1 secretion in high glucose treated monocytes. J Am Coll Nutr. 2021;40(4):327–332.
  • Parsanathan R, Achari AE, Manna P, et al. l-cysteine and vitamin D co-supplementation alleviates markers of musculoskeletal disorders in vitamin D-deficient high-fat diet-fed mice. Nutrients. 2020;12(11):3406.
  • Trovas G, Tournis S. Vitamin D and COVID-19. Hormones. 2021;20(1):207–208.
  • Mahmudpour M, Roozbeh J, Keshavarz M, et al. COVID-19 cytokine storm: the anger of inflammation. Cytokine. 2020;133:155151.
  • Ye K, Tang F, Liao X, et al. Does serum vitamin D level affect COVID-19 infection and its severity?-A case-control study. J Am Coll Nutr. 2021;40(8):724–731.
  • Pérez Castrillón J, Casado E, Corral Gudino L, et al. COVID-19 y vitamina D. Documento de posición de la Sociedad Española de Investigación Ósea y del Metabolismo Mineral (SEIOMM). Rev Osteoporos Metab Miner. 2020;12(4):155–159.
  • Liu G, Hong T, Yang J. A single large dose of vitamin D Could be used as a means of coronavirus disease 2019 prevention and treatment. Drug Des Devel Ther. 2020;14:3429–3434.
  • Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–281.
  • Scott JF, Das LM, Ahsanuddin S, et al. Oral vitamin D rapidly attenuates inflammation from sunburn: an interventional study. J Invest Dermatol. 2017;137(10):2078–2086.
  • Lakkireddy M, Gadiga SG, Malathi RD, et al. Impact of daily high dose oral vitamin D therapy on the inflammatory markers in patients with COVID 19 disease. Sci Rep. 2021;11(1):10641.
  • Murai IH, Fernandes AL, Sales LP, et al. Effect of a single high dose of vitamin D3 on hospital length of stay in patients with moderate to severe COVID-19: a randomized clinical trial. JAMA. 2021;325(11):1053.
  • Mariani J, Tajer C, Antonietti L, et al. High-dose vitamin D versus placebo to prevent complications in COVID-19 patients: a structured summary of a study protocol for a randomised controlled trial (CARED-TRIAL). Trials. 2021;22(1):111.
  • Maretzke F, Bechthold A, Egert S, et al. Role of vitamin D in preventing and treating selected Extraskeletal diseases—an umbrella review. Nutrients. 2020;12(4):969.
  • Mousa A, Naderpoor N, de Courten MP, et al. Vitamin D supplementation has no effect on insulin sensitivity or secretion in vitamin D–deficient, overweight or obese adults: a randomized placebo-controlled trial. Am J Clin Nutr. 2017:ajcn152736. DOI:10.3945/ajcn.117.152736.
  • Boucher BJ. Why do so many trials of vitamin D supplementation fail? Endocr Connect. 2020;9(9):R195–206.
  • National Institute for Health and Care Excellence (UK). COVID-19 rapid guideline: vitamin D. National Institute for Health and Care Excellence: Clinical Guidelines; 2020.
  • Authority EFS. Vitamin D: EFSA sets dietary reference values. 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.