54
Views
0
CrossRef citations to date
0
Altmetric
Ophthalmology

Immersive teaching using virtual reality technology to improve ophthalmic surgical skills for medical postgraduate students

, , &
Received 08 Apr 2024, Accepted 28 May 2024, Published online: 06 Jun 2024

References

  • Graw J. Eye development. Curr Top Dev Biol. 2010;90:343–386.
  • Mishra K, Leng T. Artificial intelligence and ophthalmic surgery. Curr Opin Ophthalmol. 2021;32(5):425–430. doi: 10.1097/ICU.0000000000000788
  • Sand JP, Zhu BZ, Desai SC. Surgical Anatomy of the Eyelids. Facial plastic surgery clinics of North America. Facial Plast Surg Clin North Am. 2016;24(2):89–95. doi: 10.1016/j.fsc.2015.12.001
  • Kels BD, Grzybowski A, Grant-Kels JM. Human ocular anatomy. Clin Dermatol. 2015;33(2):140–146. doi: 10.1016/j.clindermatol.2014.10.006
  • Regal S, Troughton J, Djenizian T, et al. Biomimetic models of the human eye, and their applications. Nanotechnology. 2021;32(30):302001. doi: 10.1088/1361-6528/abf3ee
  • Wang YE, Zhang C, Chen AC, et al. Current status of ophthalmology residency training in China: the experience from well-structured centers around the country. Asia-Pac J Ophthalmol. 2020;9(4):369–373. doi: 10.1097/APO.0000000000000284
  • Succar T, Grigg J, Beaver HA, et al. Advancing ophthalmology medical student education: international insights and strategies for enhanced teaching. Surv Ophthalmol. 2020;65(2):263–271. doi: 10.1016/j.survophthal.2019.08.006
  • Flanagan JL, De Souza N. Simulation in ophthalmic training. Asia-Pac J Ophthalmol. 2018;7(6):427–435. doi: 10.22608/APO.2018129
  • Liu PR, Lu L, Zhang JY, et al. Application of artificial intelligence in medicine: an overview. Curr Med Sci. 2021;41(6):1105–1115. doi: 10.1007/s11596-021-2474-3
  • Bhinder B, Gilvary C, Madhukar NS. Elemento O. Artificial intelligence in cancer research and precision medicine. Cancer Discovery. 2021;11(4):900–915. doi: 10.1158/2159-8290.CD-21-0090
  • Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nature Med. 2019;25(1):44–56. doi: 10.1038/s41591-018-0300-7
  • Haug CJ, Drazen JM, Drazen JM, et al. Artificial intelligence and machine learning in clinical medicine, 2023. N Engl J Med. 2023;388(13):1201–1208. doi: 10.1056/NEJMra2302038
  • de Freitas MP, Piai VA, Farias RH, et al. Artificial intelligence of things applied to assistive technology: a systematic literature review. Sensors. 2022;22(21). doi: 10.3390/s22218531
  • Barragán-Montero A, Javaid U, Valdés G, et al. Artificial intelligence and machine learning for medical imaging: A technology review. Phys Med. 2021;83:242–256. doi: 10.1016/j.ejmp.2021.04.016
  • Bhandari M, Zeffiro T, Reddiboina M. Artificial intelligence and robotic surgery: current perspective and future directions. Curr Opin Urol. 2020;30(1):48–54. doi: 10.1097/MOU.0000000000000692
  • Howard J. Artificial intelligence: Implications for the future of work. American J Industrial Med. 2019;62(11):917–926. doi: 10.1002/ajim.23037
  • Patel UK, Anwar A, Saleem S, et al. Artificial intelligence as an emerging technology in the current care of neurological disorders. J Neurol. 2021;268(5):1623–1642. doi: 10.1007/s00415-019-09518-3
  • Sarkar C, Das B, Rawat VS, et al. Artificial intelligence and machine learning technology driven modern drug discovery and development. Int J Mol Sci. 2023;24(3):2026. doi: 10.3390/ijms24032026
  • Lim JS, Hong M, Lam WST, et al. Novel technical and privacy-preserving technology for artificial intelligence in ophthalmology. Curr Opin Ophthalmol. 2022;33(3):174–187. doi: 10.1097/ICU.0000000000000846
  • Ng WY, Zhang S, Wang Z, et al. Updates in deep learning research in ophthalmology. Clin Sci (Lond). 2021;135(20):2357–2376. doi: 10.1042/CS20210207
  • Yang LWY, Ng WY, Foo LL, et al. Deep learning-based natural language processing in ophthalmology: applications, challenges and future directions. Curr Opin Ophthalmol. 2021;32(5):397–405. doi: 10.1097/ICU.0000000000000789
  • Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial intelligence in retina. Prog Retin Eye Res. 2018;67:1–29. doi: 10.1016/j.preteyeres.2018.07.004
  • Li JO, Liu H, Ting DSJ, et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective. Prog Retin Eye Res. 2021;82:100900. doi: 10.1016/j.preteyeres.2020.100900
  • Succar T, Grigg J, Beaver HA, et al. A systematic review of best practices in teaching ophthalmology to medical students. Surv Ophthalmol. 2016;61(1):83–94. doi: 10.1016/j.survophthal.2015.09.001
  • Ahmed Y, Scott IU, Greenberg PB. A survey of the role of virtual surgery simulators in ophthalmic graduate medical education. Graefe’s Arch Clin Exp Ophthalmol. 2011;249(8):1263–1265. doi: 10.1007/s00417-010-1537-0
  • Sami Memon A, Nizar Ali Momin AS, Malik MB, et al. Surgical training in ophthalmology: Role of EyeSi in the era of simulation-based learning. J Pak Med Assoc. 2022;72(Suppl 01):S127–s9. doi: 10.47391/JPMA.AKU-26
  • Almaliotis D, Athanasopoulos GP, Almpanidou S, et al. The contribution of wet labs in the education of ophthalmologists. Ann Med Surg (Lond). 2021;72:103034. doi: 10.1016/j.amsu.2021.103034
  • Liu EY, Li B, Hutnik CML. Canadian ophthalmic microsurgery course: an innovative spin on wet lab-based surgical education. Can J Ophthalmol. 2016;51(5):315–320. doi: 10.1016/j.jcjo.2016.04.021
  • Pujari A, Saluja G, Bhaskaran K, et al. Animal and cadaver human eyes for residents’ surgical training in ophthalmology. Surv Ophthalmol. 2022;67(1):226–251. doi: 10.1016/j.survophthal.2021.05.004
  • Alfawaz AM. Ophthalmology resident surgical training: Can we do better? Saudi J Ophthalmol. 2019;33(2):159–162. doi: 10.1016/j.sjopt.2018.11.009
  • Spiteri A, Aggarwal R, Kersey T, et al. Phacoemulsification skills training and assessment. Br J Ophthalmol. 2010;94(5):536–541. doi: 10.1136/bjo.2009.159715
  • Parekh M, Ruzza A, Rovati M, et al. DMEK surgical training: an instructional guide on various wet-lab methods. Surv Ophthalmol. 2023;68(6):1129–1152. doi: 10.1016/j.survophthal.2023.06.008
  • Pasricha ND, Haq Z, Ahmad TR, et al. Remote corneal suturing wet lab: microsurgical education during the COVID-19 pandemic. J Cataract Refract Surg. 2020;46(12):1667–1673. doi: 10.1097/j.jcrs.0000000000000374
  • Müller A, Pfeiffer N, Schmidt F, et al. A microsurgical wet lab for medical students increases interest in ophthalmology. Ophthalmologe. 2020;117(11):1087–1091. doi: 10.1007/s00347-020-01079-5
  • Seitz B, Turner C, Hamon L, et al. Leadership in ophthalmology training: Opportunities and risks of medical specialist education. Die Ophthalmologie. 2024;121(Suppl 1):48–60. doi: 10.1007/s00347-023-01972-9
  • Zhao J, Xu X, Jiang H, et al. The effectiveness of virtual reality-based technology on anatomy teaching: a meta-analysis of randomized controlled studies. Bmc Med Educ. 2020;20(1):127. doi: 10.1186/s12909-020-1994-z
  • Meyer ER, Cui D. Anatomy visualizations using stereopsis: Assessment and implication of stereoscopic virtual models in anatomical education. Adv Exp Med Biol. 2020;1235:117–130. doi: 10.1007/978-3-030-37639-0_7
  • Miles DL, Cui D. Creating virtual models and 3D movies using DemoMaker for anatomical education. Adv Exp Med Biol. 2023;1431:161–175.
  • Sheik-Ali S, Edgcombe H, Paton C. Next-generation virtual and augmented reality in surgical education: a narrative review. Surg Technol Int. 2019;35:27–35.
  • Cui D, Wilson TD, Rockhold RW, et al. Evaluation of the effectiveness of 3D vascular stereoscopic models in anatomy instruction for first year medical students. Anat Sci Educ. 2017;10(1):34–45. doi: 10.1002/ase.1626
  • Cui D, Chen J, Meyer E, et al. Anatomy visualizations using stereopsis: current methodologies in developing stereoscopic virtual models in anatomical education. Adv Exp Med Biol. 2019;1156:49–65.
  • Farhadi F, Barnes MR, Sugito HR, et al. Applications of artificial intelligence in orthopaedic surgery. Front Med Technol. 2022;4:995526. doi: 10.3389/fmedt.2022.995526
  • Zhou XY, Guo Y, Shen M, et al. Application of artificial intelligence in surgery. Front Med. 2020;14(4):417–430. doi: 10.1007/s11684-020-0770-0
  • Baby B, Singh R, Suri A, et al. A review of virtual reality simulators for neuroendoscopy. Neurosurg Rev. 2020;43(5):1255–1272. doi: 10.1007/s10143-019-01164-7
  • Bektaş M, Reiber BMM, Pereira JC, et al. Artificial intelligence in bariatric surgery: current status and future perspectives. Obes Surg. 2022;32(8):2772–2783. doi: 10.1007/s11695-022-06146-1
  • Lamblin G, Thiberville G, Druette L, et al. Virtual reality simulation to enhance laparoscopic salpingectomy skills. J Gynecol Obstet Hum Reprod. 2020;49(3):101685. doi: 10.1016/j.jogoh.2020.101685
  • Munawar A, Li Z, Nagururu N, et al. Fully immersive virtual reality for skull-base surgery: surgical training and beyond. Int J CARS. 2023;19(1):51–59. doi: 10.1007/s11548-023-02956-5
  • Benzakour A, Altsitzioglou P, Lemée JM, et al. Artificial intelligence in spine surgery. Int Orthop (SICOT). 2023;47(2):457–465. doi: 10.1007/s00264-022-05517-8
  • Keskinbora K, Güven F. Artificial intelligence and ophthalmology. Turk J Ophthalmol. 2020;50(1):37–43. doi: 10.4274/tjo.galenos.2020.78989
  • Deuchler S, Scholtz J, Ackermann H, et al. Implementation of microsurgery simulation in an ophthalmology clerkship in Germany: a prospective, exploratory study. Bmc Med Educ. 2022;22(1):599. doi: 10.1186/s12909-022-03634-x
  • Selvander M, Asman P. Cataract surgeons outperform medical students in Eyesi virtual reality cataract surgery: evidence for construct validity. Acta Ophthalmol. 2013;91(5):469–474. doi: 10.1111/j.1755-3768.2012.02440.x
  • Hikichi T, Yoshida A, Igarashi S, et al. Vitreous surgery simulator. Archives of ophthalmology (Chicago, Ill: 1960). Arch Ophthalmol. 2000;118(12):1679–1681. doi: 10.1001/archopht.118.12.1679
  • Verma D, Wills D, Verma M. Virtual reality simulator for vitreoretinal surgery. Eye (Lond). 2003;17(1):71–73. doi: 10.1038/sj.eye.6700166
  • Pagano L, Shah H, Al Ibrahim O, et al. Update on suture techniques in corneal transplantation: a systematic review. J Clin Med. 2022;11(4):1078. doi: 10.3390/jcm11041078
  • Deshmukh R, Nair S, Vaddavalli PK, et al. Post-penetrating keratoplasty astigmatism. Surv Ophthalmol. 2022;67(4):1200–1228. doi: 10.1016/j.survophthal.2021.11.005
  • Fares U, Sarhan AR, Dua HS. Management of post-keratoplasty astigmatism. J Cataract Refract Surg. 2012;38(11):2029–2039. doi: 10.1016/j.jcrs.2012.09.002
  • Pan J, Liu W, Ge P, et al. Real-time segmentation and tracking of excised corneal contour by deep neural networks for DALK surgical navigation. Comput Methods Programs Biomed. 2020;197:105679. doi: 10.1016/j.cmpb.2020.105679
  • Ferguson TJ, Randleman JB. Cataract surgery following refractive surgery: principles to achieve optical success and patient satisfaction. Surv Ophthalmol. 2024;69(1):140–159. doi: 10.1016/j.survophthal.2023.08.002
  • Kieval JZ, Al-Hashimi S, Davidson RS, et al. Prevention and management of refractive prediction errors following cataract surgery. J Cataract Refract Surg. 2020;46(8):1189–1197. doi: 10.1097/j.jcrs.0000000000000269
  • Lin JC, Yu Z, Scott IU, et al. Virtual reality training for cataract surgery operating performance in ophthalmology trainees. Cochrane Database Syst Rev. 2021;12(12):Cd014953. doi: 10.1002/14651858.CD014953.pub2
  • Lanza M, Koprowski R, Boccia R, et al. Application of artificial intelligence in the analysis of features affecting cataract surgery complications in a teaching hospital. Front Med. 2020;7:607870. doi: 10.3389/fmed.2020.607870
  • Nayer ZH, Murdock B, Dharia IP, et al. Predictive and construct validity of virtual reality cataract surgery simulators. J Cataract Refract Surg. 2020;46(6):907–912. doi: 10.1097/j.jcrs.0000000000000137
  • Jin K, Ye J. Artificial intelligence and deep learning in ophthalmology: Current status and future perspectives. Adv Ophthalmol Pract Res. 2022;2(3):100078. doi: 10.1016/j.aopr.2022.100078
  • Ferris JD, Donachie PH, Johnston RL, et al. Royal college of ophthalmologists’ national ophthalmology database study of cataract surgery: report 6. The impact of EyeSi virtual reality training on complications rates of cataract surgery performed by first and second year trainees. Br J Ophthalmol. 2020;104(3):324–329. doi: 10.1136/bjophthalmol-2018-313817
  • Roohipoor R, Yaseri M, Teymourpour A, et al. Early performance on an eye surgery simulator predicts subsequent resident surgical performance. J Surg Educ. 2017;74(6):1105–1115. doi: 10.1016/j.jsurg.2017.04.002
  • Thomsen AS, Smith P, Subhi Y, et al. High correlation between performance on a virtual-reality simulator and real-life cataract surgery. Acta Ophthalmol. 2017;95(3):307–311. doi: 10.1111/aos.13275
  • Hu YG, Liu QP, Gao N, et al. Efficacy of wet-lab training versus surgical-simulator training on performance of ophthalmology residents during chopping in cataract surgery. Int J Ophthalmol. 2021;14(3):366–370. doi: 10.18240/ijo.2021.03.05
  • McCannel CA, Reed DC, Goldman DR. Ophthalmic surgery simulator training improves resident performance of capsulorhexis in the operating room. Ophthalmol. 2013;120(12):2456–2461. doi: 10.1016/j.ophtha.2013.05.003
  • Lucas L, Schellini SA, Lottelli AC. Complications in the first 10 phacoemulsification cataract surgeries with and without prior simulator training. Arq Bras Oftalmol. 2019;82(4):289–294. doi: 10.5935/0004-2749.20190057
  • Feudner EM, Engel C, Neuhann IM, et al. Virtual reality training improves wet-lab performance of capsulorhexis: results of a randomized, controlled study. Graefe’s Arch Clin Exp Ophthalmol. 2009;247(7):955–963. doi: 10.1007/s00417-008-1029-7
  • Thomsen AS, Bach-Holm D, Kjærbo H, et al. Operating room performance improves after proficiency-based virtual reality cataract surgery training. Ophthalmol. 2017;124(4):524–531. doi: 10.1016/j.ophtha.2016.11.015
  • Jacobsen MF, Konge L, Bach-Holm D, et al. Correlation of virtual reality performance with real-life cataract surgery performance. J Cataract Refract Surg. 2019;45(9):1246–1251. doi: 10.1016/j.jcrs.2019.04.007
  • la Cour M, Thomsen ASS, Alberti M, et al. Simulators in the training of surgeons: is it worth the investment in money and time? 2018 Jules Gonin lecture of the retina research foundation. Graefe’s Arch Clin Exp Ophthalmol. 2019;257(5):877–881. doi: 10.1007/s00417-019-04244-y
  • Ramesh PV, Ray P, Joshua T, et al. The photoreal new-age innovative pedagogical & counseling tool for glaucoma with 3D augmented reality (Eye MG AR). Eur J Ophthalmol. 2024;34(3):870–873. doi: 10.1177/11206721231159249
  • Bakshi SK, Lin SR, Ting DSW, et al. The era of artificial intelligence and virtual reality: transforming surgical education in ophthalmology. Br J Ophthalmol. 2021;105(10):1325–1328. doi: 10.1136/bjophthalmol-2020-316845
  • Cowan CS, Renner M, De Gennaro M, et al. Cell types of the human retina and its organoids at single-cell resolution. Cell. 2020;182(6):1623–40.e34. doi: 10.1016/j.cell.2020.08.013
  • Kunikata H, Abe T, Nakazawa T. Historical, Current and future approaches to surgery for rhegmatogenous retinal detachment. Tohoku J Exp Med. 2019;248(3):159–168. doi: 10.1620/tjem.248.159
  • Pieramici DJ, Heimann F, Brassard R, et al. Virtual reality becomes a reality for ophthalmologic surgical clinical trials. Trans Vision Sci Technol. 2020;9(7):1. doi: 10.1167/tvst.9.7.1
  • Lowater SJ, Grauslund J, Vergmann AS. Modern educational simulation-based tools among residents of ophthalmology: a narrative review. Ophthalmol Ther. 2022;11(6):1961–1974. doi: 10.1007/s40123-022-00559-y
  • Vergmann AS, Vestergaard AH, Grauslund J. Virtual vitreoretinal surgery: validation of a training programme. Acta Ophthalmol. 2017;95(1):60–65. doi: 10.1111/aos.13209
  • Ahmed TM, Rehman Siddiqui MA. The role of simulators in improving vitreoretinal surgery training - a systematic review. J Pak Med Assoc. 2021;71(Suppl 1)(1):S106–s11.
  • Alañón Fernández FJ, Alañón Fernández M, Alañón Cárdenas F, et al. Improvements in planning lacrimal surgery using DICOM Horos® viewer 3D images. Arch Soc Esp Oftalmol. 2021;96(10):509–514. doi: 10.1016/j.oftal.2020.12.004
  • Kim DH, Kim HM, Park JS, et al. Virtual reality haptic simulator for endoscopic sinus and skull base surgeries. J Craniofac Surg. 2020;31(6):1811–1814. doi: 10.1097/SCS.0000000000006395
  • Ng DS, Sun Z, Young AL, et al. Impact of virtual reality simulation on learning barriers of phacoemulsification perceived by residents. Clin Ophthalmol. 2018;12:885–893. doi: 10.2147/OPTH.S140411
  • Moon HS, Yoon HJ, Park SW, et al. Usefulness of virtual reality-based training to diagnose strabismus. Sci Rep. 2021;11(1). doi: 10.1038/s41598-021-85265-8
  • Soans RS, Renken RJ, John J, et al. Patients prefer a virtual reality approach over a similarly performing screen-based approach for continuous oculomotor-based screening of glaucomatous and neuro-ophthalmological visual field defects. Front Neurosci. 2021;15:745355. doi: 10.3389/fnins.2021.745355
  • Tso HL, Young J, Yung CW. Comparing eyesi virtual reality simulator and traditional teaching methods for direct ophthalmoscopy: Students’ perspectives at Indiana University School of Medicine. J Acad Ophthalmol. 2021;13(1):e66–e72. doi: 10.1055/s-0041-1726349
  • Laurell CG, Söderberg P, Nordh L, et al. Computer-simulated phacoemulsification. Ophthalmol. 2004;111(4):693–698. doi: 10.1016/j.ophtha.2003.06.023
  • Chilibeck CM, Cnj M. Virtual reality surgical simulators in ophthalmology: Are we nearly there? Clin Exp Ophthalmol. 2020;48(6):727–729. doi: 10.1111/ceo.13784
  • Rong Q, Lian Q, Tang T. Research on the influence of AI and VR technology for students’ concentration and creativity. Frontiers In Psychology. 2022;13:767689. doi: 10.3389/fpsyg.2022.767689
  • Zhang Z, Li S, Sun L, et al. Skills assessment after a grape-based microsurgical course for ophthalmology residents: randomised controlled trial. Br J Ophthalmol. 2023;107(9):1395–1402. doi: 10.1136/bjophthalmol-2022-321135
  • Barnes SL, Bukoski A, Kerby JD, et al. Live tissue versus simulation training for emergency procedures: is simulation ready to replace live tissue? Surgery. 2016;160(4):997–1007. doi: 10.1016/j.surg.2016.04.044
  • Marshev V, Bolloc’h J, Pallamin N, et al. Impact of virtual reality headset use on eye blinking and lipid layer thickness. J Fr Ophtalmol. 2021;44(7):1029–1037. doi: 10.1016/j.jfo.2020.09.032
  • Hoffman DM, Girshick AR, Akeley K, et al. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J Vis. 2008;8(3):33.1–0. doi: 10.1167/8.3.33
  • Kamøy B, Magno M, Nøland ST, et al. Video display terminal use and dry eye: preventive measures and future perspectives. Acta Ophthalmol. 2022;100(7):723–739. doi: 10.1111/aos.15105
  • Gunasekeran DV, Ting DSW, Tan GSW, et al. Artificial intelligence for diabetic retinopathy screening, prediction and management. Curr Opin Ophthalmol. 2020;31(5):357–365. doi: 10.1097/ICU.0000000000000693
  • Mursch-Edlmayr AS, Ng WS, Diniz-Filho A, et al. Artificial intelligence algorithms to diagnose glaucoma and detect glaucoma progression: translation to clinical practice. Trans Vision Sci Technol. 2020;9(2):55. doi: 10.1167/tvst.9.2.55
  • Gutierrez L, Lim JS, Foo LL, et al. Application of artificial intelligence in cataract management: current and future directions. Eye Vis (Lond). 2022;9(1):3. doi: 10.1186/s40662-021-00273-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.