192
Views
2
CrossRef citations to date
0
Altmetric
Articles

Microstructure and magnetic properties of Cu90−xCo10Nix–7.5% SmCo5 composite alloys prepared by mechanical alloying and hot pressing

, ORCID Icon &
Pages 33-41 | Received 28 Apr 2016, Accepted 02 Dec 2016, Published online: 22 Jan 2017

References

  • Suryanarayana C. Mechanical alloying and milling. Progr Mater Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9
  • Tahmasebi R, Shamanian M, Abbasi MH, et al. J Alloys Compd. 2009;472:334–342. doi: 10.1016/j.jallcom.2008.04.061
  • Kaczmar JW, Pietrzak K, Wlosinski W. The production and application of metal matrix composite materials. J Mater Process Technol. 2000;106:58–67. doi: 10.1016/S0924-0136(00)00639-7
  • Groza J. Heat-resistant dispersion-strengthened copper alloys. J Mater Eng Perform. 1992;1:113–121. doi: 10.1007/BF02650042
  • Kwon D, Nguyen T, Huynh K, et al. Mechanical, electrical and wear properties of Cu-TiB2 nanocomposites fabricated by MA-SHS and SPS. J Ceram Process Res. 2006;7:275–279.
  • Mula S, Sahani P, Pratihar SK, et al. Mechanical properties and electrical conductivity of Cu-Cr and Cu-Cr-4%SiC nanocomposites for thermo-electric applications. Mater Sci Eng A. 2011;528(13–14):4348–4356. doi: 10.1016/j.msea.2011.03.040
  • Zuhailawati H, Mahani Y. Effects of milling time on hardness and electrical conductivity of in situ Cu-NbC composite produced by mechanical alloying. J Alloys Compd. 2009;476:142–146. doi: 10.1016/j.jallcom.2008.09.018
  • López M, Corredor D, Camurri C, et al. Performance and characterization of dispersion strengthened Cu-TiB2 composite for electrical uses. Mater Charact. 2005;55:252–262. doi: 10.1016/j.matchar.2005.04.006
  • López M, Jiménez JA, Corredor D. Precipitation strengthened high strength-conductivity copper alloys containing ZrC ceramics. Composites A. 2007;38:272–279. doi: 10.1016/j.compositesa.2006.05.002
  • Ruzic J, Stasic J, Rajkovic V, et al. Synthesis, microstructure and mechanical properties of ZrB2 nano and microparticle reinforced copper matrix composite by in situ processing. Mater Des. 2014;62:409–415. doi: 10.1016/j.matdes.2014.05.036
  • Rajkovic V, Bozic D, Devecerski A, et al. Characteristic of copper matrix simultaneously reinforced with nano-and micro-sized Al2O3 particles. Mater Charact. 2012;67:129–137. doi: 10.1016/j.matchar.2012.02.022
  • Long BD, Umemoto M, Todaka Y, et al. Fabrication of high strength Cu-NbC composite conductor by high pressure torsion. Mater Sci Eng. 2011;528(3):1750–1756. doi: 10.1016/j.msea.2010.11.005
  • Kondo S, Yamamoto T, Morimura T, et al. Effect of Cr addition on magnetization of Cu-Co alloy. J Appl Phys. 1993;73(5):2453–2457. doi: 10.1063/1.353103
  • Zhang GM, Yang CZ. Magnetic properties of Cu80Co20 and Cu80Co20Fe5 melt spun ribbons. Phys Rev B. 1994;50:12559–12567. doi: 10.1103/PhysRevB.50.12559
  • Kataoka N, Kim IJ, Takeda H, et al. Giant magnetoresistance of Cu-Co-X alloys produced by liquid quenching. Mater Sci Eng A. 1994;181-182:888–891. doi: 10.1016/0921-5093(94)90763-3
  • Sun Z, Song X, Hu Z, et al. Effect of Ni addition on liquid phase separation of Cu-Co alloys. J Alloys Compd. 2001;319:276–279. doi: 10.1016/S0925-8388(01)00884-2
  • Tellez-Blanco JC, Gróssinger R, Sato Turnelli R. Structure and magnetic properties of SmCo5−X CuX alloys. J Alloys Compd. 1998;281:1–5. doi: 10.1016/S0925-8388(98)00760-9
  • Crisan O, Le Breton JM, Jianu A, et al. A magnetic study of magnetoresistive Cu-(SmCo5)–Fe heterogranular alloys. J Magn Magn Mater. 2001;234:95–99. doi: 10.1016/S0304-8853(01)00279-7
  • Jiang JZ, Goya GF, Rechenberg HR. Magnetic properties of nanostructured CuFe2O4. J Phys Condens Mater. 1999;11:4063–4078. doi: 10.1088/0953-8984/11/20/313
  • Lardé R, Le Breton JM, Richomme F, et al. Investigation of granular Cu80(Sm0.17Co0.83)10Fe10 ribbons with magnetoresistive properties. J Magn Magn Mater. 2004;272–276:1714–1715. doi: 10.1016/j.jmmm.2003.12.272
  • López M, Jiménez J, Koduri R, et al. Magnetic and structural properties of hot pressed Cu–SmCo5 composites obtained by mechanical alloying. Powder Metall. 2012;55(5):415–420. doi: 10.1179/1743290112Y.0000000018
  • López M, Nuñez V, Koduri R, et al. Soft magnetic Cu–Co–Ni composite materials produced by mechanical alloying, cold compaction and sintering. Powder Metall. 2012;55(2):148–153. doi: 10.1179/1743290111Y.0000000002
  • Raabe D, Miyake K, Takahara H. Processing, microstructure, and properties of ternary high-strength Cu–Cr–Ag in situ composites. Mater Sci Eng. A. 2000;291:186–197. doi: 10.1016/S0921-5093(00)00981-3
  • Morris JW. Structural alloys for high field superconducting magnets. Adv Cryog Eng Mater. 1986;32:1–22. doi: 10.1007/978-1-4613-9871-4_1
  • Chicinas I. Soft magnetic nanocrystalline powders produced by mechanical alloying routes. J Optoelectron Adv Mater. 2006;8(2):439–448.
  • Zhou J, Skomski R, Sellmyer DJ. Magnetic hysteresis of mechanically alloyed Sm-Co nanocrystalline powders. J Appl Phys. 2003;93(10):6495–6497. doi: 10.1063/1.1558587
  • Tiberto P, Vinai F, Allia P, et al. Giant magnetoresistance in melt-spun granular Cu100xCox alloys with correlated magnetic moments. IEEE Trans Magn. 1996;32:4704–4706. doi: 10.1109/20.539124
  • El-Eskandarany MS. Mechanical alloying: nanotechnology, materials science and powder metallurgy. 2nd ed. UK: Elsevier Oxforf; 2015.
  • Goussous S, Xu W, Wu X, et al. Al-C nanocomposites consolidated by back pressure equal channel angular pressing. Comp Sci Technol. 2009;69:1997–2001. doi: 10.1016/j.compscitech.2009.05.004
  • Bakshi SR, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites – a review. Int Mater Rev. 2010;55:41–64. doi: 10.1179/095066009X12572530170543
  • Gente C, Oehring M, Bormann R. Formation of thermodynamically unstable solid solutions in the Cu-Co system by mechanical alloying. Phys Ver B. 1993;48:13244–13252.
  • Karpuz A, Kockar H, Alper M. Microstructure dependence of magnetic properties on electrochemically produced ternary CuCoNi alloys. J Mater Sci Mater Electron. 2014;25:4483–4488. doi: 10.1007/s10854-014-2191-9
  • Lee D, Takeda M, Takeguchi M, et al. Precipitation behavior and magnetic properties of nanoscale particles in a Cu-10at%Ni 5% Co alloy. Adv Mater Res. 2014;1077:23–29. doi: 10.4028/www.scientific.net/AMR.1077.23
  • Nishizawa T, Ishida K. Alloy phase diagrams ASM. 10th ed. Handbook vol. 3. Materials Park, OH: ASM International; 1997.
  • Li WF, Spehri-Amin H, Zheng LY, et al. Effect of ball-milling surfactants on the interface chemistry in hot-compacted SmCo5 magnets. Acta Mater. 2012;60(19):6685–6691. doi: 10.1016/j.actamat.2012.08.038
  • Wang Y, Li Y, Rong Ch, et al. Sm-Co hard magnetic nanoparticles prepared by surfactant-assisted ball milling. Nanotechnology. 2007;18:465701–465704. doi: 10.1088/0957-4484/18/46/465701
  • Zhongmin Ch, Meng-Burany X, Ideyuki OH, et al. Magnetic properties and microstructure of mechanically milled Sm2(Co,M)17 based powders With M = Zr, Hf, Nb, V, Ti, Cr, Cu and Fe. J Appl Phys. 2000;87(7):3409–3414. doi: 10.1063/1.372359
  • Zhang J, Zhang SY, Zhang HW, et al. Structure, magnetic properties and coercivity mechanism of nanocomposite SmCo5/α-Fe magnets prepared by mechanical milling. J Appl Phys. 2001;89(10):5601–5605. doi: 10.1063/1.1365430
  • Asaka K, Ishihara Ch, Takata T. Performance and properties of high dense Soft magnetic composites. EURO PM2004, PM Functional Mater. p. 611–615.
  • Jansen E, Schaefer W, Will G. R values in analysis of powder diffraction data using Rietveld refinement. J Appl Crystallogr. 1994;27:492–496. doi: 10.1107/S0021889893012348
  • Herrick CC. The vapor pressure and heat of sublimation of samarium. J Less-Common Met. 1964;7:330–335. doi: 10.1016/0022-5088(64)90076-1
  • Penton A, Estevez E, Lora R, et al. On the nature of the disordered microstructure in Sm(Co,Cu)5 alloys with increasing Cu content. J Alloys Compds. 2007;429:343–347. doi: 10.1016/j.jallcom.2006.04.044
  • Demazeau G, Pouchard M, Hagenmuller P. Sur de nouveaux composés oxygénés du cobalt +III dérivés de la perovskite. J. Solid State Chem. 1974;9:202–209. doi: 10.1016/0022-4596(74)90075-9
  • Thompson CA, Manganaro WM, Fickett FR. Cryogenic properties of copper. Boulder (CO): International Copper Association Ltd; 1990.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.