119
Views
3
CrossRef citations to date
0
Altmetric
Articles

Application of response surface methodology for modelling of TiC coating on AISI D2 steel using a mechanical milling technique

&
Pages 280-292 | Received 20 Jun 2015, Accepted 21 Jan 2017, Published online: 18 Mar 2017

References

  • Ghosh B, Pradhan SK. Microstructure characterization of nanocrystalline TiC synthesized by mechanical alloying. Mater Chem Phys. 2010;120:537–545. doi: 10.1016/j.matchemphys.2009.11.048
  • Ellis JL, Goetzel CG. Cermets. In: ASM Metals Handbook. Ohio: ASM International, Materials Park; 1990. p. 978–1007.
  • Santhanam AT, Tierny P, Hunt JL. Cemented carbides. In: ASM Metals Handbook. Ohio: ASM International, Materials Park; 1990. p. 950–977.
  • Zhang S. Titanium carbonitride-based cermets: processes and properties. Mater Sci Eng A. 1993;163:141–148. doi: 10.1016/0921-5093(93)90588-6
  • Liu ZG, Guo JT, Ye LL, et al. Formation mechanism of TiC by mechanical alloying. Appl Phys Lett. 1994;65:2666–2668. doi: 10.1063/1.112596
  • El-Eskandarany MS. Synthesis of nanocrystalline titanium carbide alloy powders by mechanical solid state reaction. Metall Mater Trans A. 1996;27:2374–2382. doi: 10.1007/BF02651892
  • El-Eskandarany MS, Konno TJ, Sumiyama K, et al. Morphological and structural studies of mechanically alloyed Ti44C56 powders. Mater Sci Eng. 1996;217–218:265–268. doi: 10.1016/S0921-5093(96)10344-0
  • El-Eskandarany MS. Structure and properties of nanocrystalline TiC full-density bulk alloy consolidated from mechanically reacted powders. J. Alloy Compd. 2000;305:225–238. doi: 10.1016/S0925-8388(00)00692-7
  • Gutmanas EY, Gotman I. Dense high-temperature ceramics by thermal explosion under pressure. J Eur Ceram Soc. 1999;19:2381–2393. doi: 10.1016/S0955-2219(99)00104-1
  • Koc RC, Meng C, Swift GA. Sintering properties of submicron TiC powders from carbon coated titania precursor. J Mater Sci. 2000;35:3131–3141. doi: 10.1023/A:1004876121000
  • Luo Y, Ge S, Jin Z, et al. Formation of titanium carbide coating with micro-porous structure. Appl Phys A Mater Sci Process. 2010;98:765–768. doi: 10.1007/s00339-009-5495-5
  • Kinkel S, Angelopoulos GN, Dahl W. Formation of TiC coatings on steels by a fluidized bed chemical vapour deposition process. Surf Coat Technol. 1994;64:119–125. doi: 10.1016/S0257-8972(09)90012-3
  • Li XM, Han Y. Mechanical properties of Ti(C0.7N0.3) film produced by plasma electrolytic carbonitriding of Ti6Al4 V alloy. Appl Surf Sci. 2008;254:6350–6357. doi: 10.1016/j.apsusc.2008.03.172
  • Romankov S, Komarov SV, Vdovichenko E, et al. Fabrication of TiN coatings using mechanical milling techniques. Int J Refract Met Hard Mat. 2009;27:492–497. doi: 10.1016/j.ijrmhm.2008.10.005
  • Romankov S, Kaloshkin SD, Hayasaka Y, et al. Structural evolution of the Ti–Al coatings produced by mechanical alloying technique. J Alloy Compd. 2009;483:386–388. doi: 10.1016/j.jallcom.2008.07.199
  • Saba F, Raygan S, Abdizadeh H, et al. Preparing TiC coating on AISI D2 steel using mechanical milling technique. Powder Technol. 2013;246:229–234. doi: 10.1016/j.powtec.2013.05.031
  • Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9
  • Ebadnejad A, Karimi GR, Dehghani H. Application of response surface methodology for modeling of ball mills in copper sulphide ore grinding. Powder Technol. 2013;245:292–296. doi: 10.1016/j.powtec.2013.04.021
  • Myers RH, Montgomery DC, Anderson CM. Response surface methodology: process and product optimization using designed experiments. 3rd ed. Hoboken, New Jersey: John Wiley& Sons, Inc.; 2009.
  • Aslan N. Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a multigravity separator for coal cleaning. Fuel. 2007;86:769–776. doi: 10.1016/j.fuel.2006.10.020
  • Aslan N, Cebeci Y. Application of Box–Behnken design and response surface methodology for modeling of some Turkish coals. Fuel. 2007;86:90–97. doi: 10.1016/j.fuel.2006.06.010
  • Aslan N. Modeling and optimization of multi gravity separator to produce celestiteconcentrate. Powder Technol. 2007;174:127–133. doi: 10.1016/j.powtec.2007.01.007
  • Aslan N. Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a multigravity separator for chromite concentration. Powder Technol. 2008;185:80–86. doi: 10.1016/j.powtec.2007.10.002
  • Martinez AL, Uribe AS, Carrillo FRP, et al. Study of celestite flotation efficiency using sodium dodecyl sulfonate collector: factorial experiment and statistical analysis of data. Int J Miner Process. 2003;70:83–97. doi: 10.1016/S0301-7516(02)00152-7
  • Yalcina T, Idusuyi E, Johnson R, et al. A simulation study of sulphurgrindability in a batch ball mill. Powder Technol. 2004;146:193–199. doi: 10.1016/j.powtec.2004.09.030
  • Kalyani VK, Pallavika T, Charan G, et al. Optimization of a laboratory-scale froth flotation process using response surface methodology. Coal Prep. 2005;25:141–153. doi: 10.1080/07349340590962793
  • Hou TH, Su CH, Liu WL. Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm. Powder Technol. 2007;173:153–162. doi: 10.1016/j.powtec.2006.11.019
  • Abdellahi M, Bhmanpour M, Bahmanpour M. Optimization of process parameters to maximize hardness of metal/ceramic nanocomposites produced by high energy ball milling. Ceram Int. 2014;40:16259–16272. doi: 10.1016/j.ceramint.2014.07.063
  • Maran JP, Manikandan S. Response surface modeling and optimization of process parameters for aqueous extraction of pigments from prickly pear (Opuntia ficus-indica) fruit. Dyes Pigm. 2012;95:465–472. doi: 10.1016/j.dyepig.2012.06.007
  • Zhang FL, Zhu M, Wang CY. Parameters optimization in the planetary ball milling of nanostructured tungsten carbide/cobalt powder. Int J Refract Met Hard Mat. 2008;26:329–333. doi: 10.1016/j.ijrmhm.2007.08.005
  • Singhal SK, Pasricha R, jangra M, et al. Carbon nanotubes: amino functionalization and its application in the fabrication of Al-matrix composites. Powder Technol. 2012;215–216:254–263. doi: 10.1016/j.powtec.2011.10.013
  • Zadorozhnyy V, Kaloshkin S, Kaevitser E, et al. Coating of metals with intermetallics by mechanical alloying. J Alloy Compd. 2011;509:S507–S509. doi: 10.1016/j.jallcom.2011.01.164

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.