181
Views
11
CrossRef citations to date
0
Altmetric
Articles

An investigation of the effect of high-energy milling time of Ti6Al4V biomaterial on the wear performance in the simulated body fluid environment

&
Pages 384-392 | Received 28 Dec 2016, Accepted 23 May 2017, Published online: 05 Jun 2017

References

  • Elias CN, Fernandes DJ, Resende RS, et al. Mechanical properties, surface morphology and stability of a modified commercially pure high strength titanium alloy for dental implants. Dental Mater. 2015;31(2):e1–e13. doi: 10.1016/j.dental.2014.10.002
  • Ye X, Zion TH, Tang G, et al. Retracted: mechanical properties and phase transition of biomedical titanium alloy strips with initial quasi-single phase state under high-energy electropulses. J Mech Behav Biomed Mater. 2015;42:100–115. doi: 10.1016/j.jmbbm.2014.11.009
  • Roa JJ, Fargas G, Jimenez-Pique E, et al. Deformation mechanisms induced under high cycle fatigue tests in a metastable austenitic stainless steel. Mater Sci Eng A. 2014;597:232–236. doi: 10.1016/j.msea.2013.12.044
  • Özyürek D, Tekeli S. Wear properties of titanium and Ti6Al4V alloy by mechanical milling. High Temp Mater Proc. 2011;30(1–2):175–180. doi: 10.1515/htmp.2011.026
  • Cao F, Kumar P, Koopman M, et al. Understanding competing fatigue mechanisms in powder metallurgy Ti-6Al-4V alloy: role of crack initiation and duality of fatigue response. Mater Sci Eng A. 2015;630:139–145. doi: 10.1016/j.msea.2015.02.028
  • Mohammed MT, Khan ZA, Geetha M, et al. Microstructure, mechanical properties and electrochemical behavior of a novel biomedical titanium alloy subjected to thermo-mechanical processing including aging. J Alloy Compd. 2015;634:272–280. doi: 10.1016/j.jallcom.2015.02.095
  • Bolzoni L, Ruiz-Navas EM, Gordo E. Feasibility study of the production of biomedical Ti-6Al-4V alloy by powder metallurgy. Mater Sci Eng C. 2015;49:400–407. doi: 10.1016/j.msec.2015.01.043
  • Niinomi M. Metallic biomaterials. J Artif Organs. 2008;11(3):105–110. doi: 10.1007/s10047-008-0422-7
  • Karanjai M, Sundaresan R, Rao GVN, et al. Development of titanium based biocomposite by powder metallurgy processing with in situ forming of Ca-P phases. Mater Sci Eng A. 2007;447(1):19–26. doi: 10.1016/j.msea.2006.10.154
  • Ribeiro ALR, Junior RC, Cardoso F, et al. Mechanical, physical, and chemical characterization of Ti-35Nb-5Zr and Ti-35Nb-10Zr casting alloys. J Mater Sci Mater Med. 2009;20(8):1629–1636. doi: 10.1007/s10856-009-3737-x
  • Henriques VAR, Galvani ET, Petroni SLG, et al. Production of Ti-13Nb-13Zr alloy for surgical implants by powder metallurgy. J Mater Sci. 2010;45(21):5844–5850. doi: 10.1007/s10853-010-4660-8
  • Ergül E, Gülsoy HÖ, Günay V. Effect of sintering parameters on mechanical properties of injection moulded Ti–6Al–4V alloys. Powder Metall. 2009;52(1):65–71. doi: 10.1179/174329008X271691
  • Imam MA, Fraker AC. Titanium alloys as implant materials. Medical applications of titanium and its alloys: the material and biological issues. ASTM SPT. 1996;1272:3–15.
  • Hussein MA, Mohammed AS, Al-Aqeeli N. Wear characteristics of metallic biomaterials: a review. Mater. 2015;8(5):2749–2768. doi: 10.3390/ma8052749
  • Alvarado J, Maldonado R, Marxuach J, et al. Biomechanics of hip and knee prostheses. Appl Eng Mech Med. 2003;6:22.
  • Ramsden JJ, Allen DM, Stephenson DJ, et al. The design and manufacture of biomedical surfaces. CIRP Ann Manuf Technol. 2007;56(2):687–711. doi: 10.1016/j.cirp.2007.10.001
  • Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46(1–2):1–184. doi: 10.1016/S0079-6425(99)00010-9
  • Özyürek D, Özbilen S, Çetinkaya C. An investigation of contamination in titanium during mechanical milling and sintering. 4th International Powder Metallurgy Conference; 2005; Turkey. p. 1249–1257.
  • Fogagnolo JB, Velasco F, Robert MH, et al. Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders. Mater Sci Eng A. 2003;342(1):131–143. doi: 10.1016/S0921-5093(02)00246-0
  • Kokubo T, Kushitani H, Sakka S, et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mater Res. 1990;24(6):721–734. doi: 10.1002/jbm.820240607
  • Cordero ZC, Knight BE, Schuh CA. Six decades of the Hall–Petch effect–a survey of grain-size strengthening studies on pure metals. Int Mater Rev. 2016;61(8):495–512. doi: 10.1080/09506608.2016.1191808
  • Leyens C, Peters M. Titanium and titanium alloys: fundamentals and applications. Weinheim: John Wiley & Sons; 2003.
  • Bolzoni L, Esteban PG, Ruiz-Navas EM, et al. Mechanical behaviour of pressed and sintered titanium alloys obtained from prealloyed and blended elemental powders. J Mech Biomed Mater. 2012;14:29–38. doi: 10.1016/j.jmbbm.2012.05.013
  • Novák P, Kříž J, Michalcová A, et al. Effect of alloying elements on properties of PM Ti-Al-Si alloys. Acta Metal Slov. 2013;19(4):240–246.
  • Nazari KA, Nouri A, Hilditch T. Effects of milling time on powder packing characteristics and compressive mechanical properties of sintered Ti-10Nb-3Mo alloy. Mater Lett. 2015;140:55–58. doi: 10.1016/j.matlet.2014.10.143
  • Sun F, Zúñiga A, Rojas P, et al. Thermal stability and recrystallization of nanocrystalline Ti produced by cryogenic milling. Metal Mater Trans A. 2006;37(7):2069–2078. doi: 10.1007/BF02586127
  • Ganesh BKC, Ramanaih N, Bhuvaneswari N, et al. Effect of Hank’s solution and shot blasting on the tribological behavior of titanium implant alloys. Int J Mater Biomater App. 2012;2(1):5–11.
  • Zmitrowicz A. Wear patterns and laws of wear – a review. J Theor App Mech. 2006;44(2):219–253.
  • Dursun Ö, Tansel T, Hatice E, et al. Synthesis, characterization and dry sliding wear behavior of in-situ formed TiAl3 precipitate reinforced A356 alloy produced by mechanical alloying method. Mater Res. 2015;18(4):813–820. doi: 10.1590/1516-1439.020215
  • Vencl A, Bobic I, Jovanovic MT, et al. Microstructural and tribological properties of A356 Al-Si alloy reinforced with Al2O3 particles. Tribol Lett. 2008;32(3):159–170. doi: 10.1007/s11249-008-9374-6
  • Ren G, Zhang Z, Zhu X, et al. Sliding wear behaviors of Nomex fabric/phenolic composite under dry and water-bathed sliding conditions. Friction. 2014;2(3):264–271. doi: 10.1007/s40544-014-0046-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.