309
Views
16
CrossRef citations to date
0
Altmetric
Regular papers

A novel approach for dynamic compaction of Mg–SiC nanocomposite powder using a modified Split Hopkinson Pressure Bar

, &
Pages 164-177 | Received 07 Nov 2017, Accepted 27 Dec 2017, Published online: 20 Mar 2018

References

  • Li N, Zheng Y. Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol. 2013;29:489–502. doi: 10.1016/j.jmst.2013.02.005
  • Nguyen Q, Gupta M, Srivatsan TS. On the role of nano-alumina particulate reinforcements in enhancing the oxidation resistance of magnesium alloy AZ31B. Mater Sci Eng: A. 2009;500:233–237. doi: 10.1016/j.msea.2008.09.050
  • Gupta M, Lai M, Saravanaranganathan D. Synthesis, microstructure and properties characterization of disintegrated melt deposited Mg/SiC composites. J Mater Sci. 2000;35:2155–2165. doi: 10.1023/A:1004706321731
  • Meenashisundaram GK, Seetharaman S, Gupta M. Enhancing overall tensile and compressive response of pure Mg using nano-TiB 2 particulates. Mater Charact. 2014;94 :178–188. doi: 10.1016/j.matchar.2014.05.021
  • Jiang Q, Wang H, Ma B-X, et al. Fabrication of B 4 C particulate reinforced magnesium matrix composite by powder metallurgy. J Alloys Compd. 2005;386:177–181. doi: 10.1016/j.jallcom.2004.06.015
  • Ferkel H, Mordike B. Magnesium strengthened by SiC nanoparticles. Mater Sci Eng: A. 2001;298:193–199. doi: 10.1016/S0921-5093(00)01283-1
  • Imai T, Lim SW, Jiang D, et al. Superplasticity of ceramic particulate reinforced magnesium alloy composite made by a vortex method, in: materials science forum. Trans Tech Publ. 1999;304-306:315–320.
  • Bathula S, Saravanan M, Dhar A. Nanoindentation and wear characteristics of Al 5083/SiCp nanocomposites synthesized by high energy ball milling and spark plasma sintering. J Mater Sci Technol. 2012;28:969–975. doi: 10.1016/S1005-0302(12)60160-1
  • Page N, Killen P, John DS. Sintering enhancement in dynamically compacted commercial iron powders. Mater Sci Eng: A. 1990;130:231–240. doi: 10.1016/0921-5093(90)90063-9
  • Goh C.S, Wei J, Lee L, et al. Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique. Nanotechnology. 2005;17:7. doi: 10.1088/0957-4484/17/1/002
  • Majzoobi G, Atrian A, Pipelzadeh M. Effect of densification rate on consolidation and properties of Al7075–B4C composite powder. Powder Metall. 2015;58:281–288. doi: 10.1179/1743290115Y.0000000008
  • Hou L, Li B, Wu R, et al. Microstructure and mechanical properties at elevated temperature of Mg-Al-Ni alloys prepared through powder metallurgy. J Mater Sci Technol. 2017;33:947–953. doi: 10.1016/j.jmst.2017.02.002
  • Majzoobi G, Bakhtiari H, Atrian A, et al. Warm dynamic compaction of Al6061/SiC nanocomposite powders, proceedings of the institution of mechanical engineers. Part L: J Mater: Design Appl. 2016;230:375–387.
  • Atrian A, Majzoobi G, Enayati M, et al. Mechanical and microstructural characterization of Al7075/SiC nanocomposites fabricated by dynamic compaction. Int J Miner, Metal Mater. 2014;21:295–303. doi: 10.1007/s12613-014-0908-7
  • Majzoobi G, Atrian A, Enayati M. Tribological properties of Al7075-SiC nanocomposite prepared by hot dynamic compaction. Compos Interfaces. 2015;22:579–593. doi: 10.1080/09276440.2015.1055955
  • Kim Y, Mitsugi F, Tomoaki I, et al. Shock-consolidated TiO 2 bulk with pure anatase phases fabricated by explosive compaction using underwater shockwave. J Eur Ceram Soc. 2011;31:1033–1039. doi: 10.1016/j.jeurceramsoc.2010.12.020
  • Faruqui AN, Manikandan P, Sato T, et al. Mechanical milling and synthesis of Mg-SiC composites using underwater shock consolidation. Met Mater Int. 2012;18:157–163. doi: 10.1007/s12540-012-0019-9
  • Seetharaman S, Subramanian J, Tun KS, et al. Synthesis and characterization of nano boron nitride reinforced magnesium composites produced by the microwave sintering method. Materials (Basel). 2013;6:1940–1955. doi: 10.3390/ma6051940
  • Muñoz-Moreno R., Ruiz-Navas EM, Srinivasarao B., et al. Microstructural development and mechanical properties of PM Ti–45Al–2Nb–2Mn–0.8 vol.-% TiB 2 processed by field assisted Hot pressing. J Mater Sci Technol. 2014;30:1145–1154. doi: 10.1016/j.jmst.2014.08.008
  • Lavernia EJ, Gomez E, Grant N. The structures and properties of Mg–Al–Zr and Mg–Zn–Zr alloys produced by liquid dynamic compaction. Mater Sci Eng. 1987;95:225–236. doi: 10.1016/0025-5416(87)90514-3
  • Ayman E, Junko U, Katsuyoshi K. Application of rapid solidification powder metallurgy to the fabrication of high-strength, high-ductility Mg–Al–Zn–Ca–La alloy through hot extrusion. Acta Mater. 2011;59:273–282. doi: 10.1016/j.actamat.2010.09.031
  • Ohashi W, Takenaka K, Kondo T, et al. Applied pressure-dependent anisotropic grain connectivity in shock consolidated MgB 2 samples. Phys C: Superconductivity Appl. 2006;444 :5–11. doi: 10.1016/j.physc.2006.04.107
  • Manikandan P, Faruqui AN, Raghukandan K, et al. Underwater shock consolidation of Mg–SiC composites. J Mater Sci. 2010;45:4518–4523. doi: 10.1007/s10853-010-4547-8
  • Wang Z, Li X, Zhu J, et al. Dynamic consolidation of W–Cu nanocomposites from W–CuO powder mixture. Mater Sci Eng: A. 2010;527:6098–6101. doi: 10.1016/j.msea.2010.05.077
  • Skoglund M.K.a.I.H. P., Proc of the 2002 world congress on powder metallurgy and particulate materials, Orlando, USA, 2002.
  • Jianzhong W, Haiqing Y, Xuanhui Q. Analysis of density and mechanical properties of high velocity compacted iron powder. Acta Metal Sinica (English Lett). 2009;22:447–453. doi: 10.1016/S1006-7191(08)60122-2
  • Sethi G, Myers N, German RM. An overview of dynamic compaction in powder metallurgy. Int Mater Rev. 2008;53:219–234. doi: 10.1179/174328008X309690
  • Atrian A, Majzoobi G, Nourbakhsh S, et al. Evaluation of tensile strength of Al7075-SiC nanocomposite compacted by gas gun using spherical indentation test and neural networks. Adv Powder Technol. 2016;27:1821–1827. doi: 10.1016/j.apt.2016.06.015
  • Yan S, Huang S, Liu W, et al. Experimental and numerical investigation of temperature evolution during electromagnetic pulsed compaction of powders. Powder Technol. 2017;306:1–9. doi: 10.1016/j.powtec.2016.11.014
  • Gu YB, Ravichandran G. Dynamic behavior of selected ceramic powders. Int J Impact Eng. 2006;32:1768–1785. doi: 10.1016/j.ijimpeng.2005.04.012
  • Skoglund P. High density PM parts by high velocity compaction. Powder Metal. 2001;44:199–202.
  • Hokamoto K, Tanaka S, Fujita M, et al. High temperature shock consolidation of hard ceramic powders. Phys B. 1997;239:1–5. doi: 10.1016/S0921-4526(97)00364-5
  • Brochu M, Zimmerly T, Ajdelsztajn L, et al. Dynamic consolidation of nanostructured Al–7.5% Mg alloy powders. Mater Sci Eng: A. 2007;466:84–89. doi: 10.1016/j.msea.2007.02.028
  • Borg JP, Chapman DJ, Tsembelis K, et al. Dynamic compaction of porous silica powder. J Appl Phys. 2005;98:073509. doi: 10.1063/1.2064315
  • Fredenburg DA, Thadhani NN, Vogler TJ. Shock consolidation of nanocrystalline 6061-T6 aluminum powders. Mat Sci Eng: A. 2010;527:3349–3357. doi: 10.1016/j.msea.2010.02.036
  • Wang J, Qu X, Yin H, et al. High velocity compaction of ferrous powder. Powder Technol. 2009;192:131–136. doi: 10.1016/j.powtec.2008.12.007
  • G. Majzoobi, K. Rahmani, A. Atrian. Temperature effect on mechanical and tribological characterization of Mg-SiC nanocomposite fabricated by high rate compaction. Materials Research Express. 2018;5:01504620.
  • Häggblad H-Å, Hockauf M, Eriksson M, et al. Simulation of high velocity compaction of powder in a rubber mould with characterization of silicone rubber and titanium powder using a modified split Hopkinson set-up. Powder Technol. 2005;154:33–42. doi: 10.1016/j.powtec.2005.01.026
  • Gray GT. Classic split-Hopkinson pressure bar testing. Materials Park (OH): ASM International; 2000462–476.
  • Kannan C, Ramanujam R. Comparative study on the mechanical and microstructural characterisation of AA 7075 nano and hybrid nanocomposites produced by stir and squeeze casting. J Adv Res. 2017;8:309–319. doi: 10.1016/j.jare.2017.02.005
  • Majzoobi G, Freshteh-Saniee F, Khosroshahi SFZ, et al. Determination of materials parameters under dynamic loading. Part I: experiments and simulations. Comput Mater Sci. 2010;49:192–200. doi: 10.1016/j.commatsci.2010.03.054
  • Zhong W, Rusinek A, Jankowiak T, et al. Influence of interfacial friction and specimen configuration in Split Hopkinson Pressure Bar system. Tribol Int. 2015;90:1–14. doi: 10.1016/j.triboint.2015.04.002
  • Pan JL, Selby AR. Simulation of dynamic compaction of loose granular soils. Adv Eng Softw. 2002;33:631–640. doi: 10.1016/S0965-9978(02)00067-4
  • Helvany S. Applied soil mechanics with ABAQUS applications. New Jersey: John Wiley & Sons; 2007.
  • Rolland SA, Mosbah P, Gethin DT, et al. Lode dependency in the cold die powder compaction process. Powder Technol. 2012;221:123–136. doi: 10.1016/j.powtec.2011.12.044
  • Shima S, Oyane M. Plasticity theory for porous metals. Int J Mech Sci. 1976;18:285–291. doi: 10.1016/0020-7403(76)90030-8
  • Herrmann W. Constitutive equation for the dynamic compaction of ductile porous materials. J Appl Phys. 1969;40:2490–2499. doi:10.1063/1.1658021.
  • N. ASTM. Standard practice for microetching metals and alloys. Unided Stated of America: ASTM; 2005.
  • A. Standard, E384. Standard test method for microindentation hardness of materials. West Conshohocken (PA): ASTM International; 2000.
  • E. ASTM. Standard test methods of compression testing of metallic materials at room temperature. West Conshohocken, PA: ASTM International; 2000. p. 98–105.
  • Khalil K.A, A new-developed nanostructured Mg/HAp nanocomposite by high frequency induction heat sintering process, in: IOP Conference series: Materials Science and Engineering, IOP Publishing. 2012, pp. 012031.
  • Goh C, Wei J, Lee L, et al. Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater Sci Eng: A. 2006;423:153–156. doi: 10.1016/j.msea.2005.10.071
  • Jafari M, Abbasi M, Enayati M, et al. Mechanical properties of nanostructured Al2024–MWCNT composite prepared by optimized mechanical milling and hot pressing methods. Adv Powder Technol. 2012;23:205–210. doi: 10.1016/j.apt.2011.02.008
  • Rashad M, Pan F, Asif M, et al. Improved mechanical proprieties of ‘magnesium based composites’ with titanium–aluminum hybrids. J Magnesium Alloys. 2015;3:1–9. doi: 10.1016/j.jma.2014.12.010
  • Porter DA, Easterling KE, Sherif M. Phase transformations in metals and alloys. United Kingdom: CRC Press; 2009; (Revised Reprint).
  • Thakur SK, Kwee GT, Gupta M. Development and characterization of magnesium composites containing nano-sized silicon carbide and carbon nanotubes as hybrid reinforcements. J Mater Sci. 2007;42:10040–10046. doi: 10.1007/s10853-007-2004-0
  • Yao X, Zhang Z, Zheng Y, et al. Effects of SiC nanoparticle content on the microstructure and tensile mechanical properties of ultrafine grained AA6063-SiC np nanocomposites fabricated by powder metallurgy. J Mater Sci Technol. 2016;33:1023–1030. doi: 10.1016/j.jmst.2016.09.022
  • Zhang Z, Chen D. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater Sci Eng: A. 2008;483:148–152. doi: 10.1016/j.msea.2006.10.184

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.