549
Views
13
CrossRef citations to date
0
Altmetric
Special theme block on high entropy alloys, guest edited by Paula Alvaredo Olmos, Universidad Carlos III de Madrid, Spain, and Sheng Guo, Chalmers University, Gothenburg, Sweden

Processing and characterisation of nano crystalline AlCoCrCuFeTix high-entropy alloy

, , , ORCID Icon &
Pages 139-148 | Received 20 Oct 2017, Accepted 05 Feb 2018, Published online: 27 Feb 2018

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303. doi: 10.1002/adem.200300567
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375–377:213–218. doi: 10.1016/j.msea.2003.10.257
  • Cantor B. Multicomponent and high entropy alloys. Entropy. 2014;16:4749–4768. doi: 10.3390/e16094749
  • Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9
  • Varalakshmi S, Kamaraj M, Murty BS. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J Alloys Comp. 2008;460:253–257. doi: 10.1016/j.jallcom.2007.05.104
  • Zhang KB, Fu ZY, Zhang JY, et al. Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J Alloys Comp. 2009;485:L31–L34. doi: 10.1016/j.jallcom.2009.05.144
  • Varalakshmi S, Kamaraj M, Murty BS. Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater Sci Eng A. 2010;527:1027–1030. doi: 10.1016/j.msea.2009.09.019
  • Takeuchi A, Inoue A. Mixing enthalpy of liquid phase calculated by Miedema’s scheme and approximated with sub regular solution model for assessing forming ability of amorphous and glassy alloys. Intermetallics. 2010;18:1779–1789. doi: 10.1016/j.intermet.2010.06.003
  • Sheng GUO, Liu CT. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater Int. 2011;21:433–446. doi: 10.1016/S1002-0071(12)60080-X
  • Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: forming solid solutions or amorphous phase. Intermetallics. 2013;41:96–103. doi: 10.1016/j.intermet.2013.05.002
  • Fu Z, Chen W, Xiao H, et al. Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA SPS technique. Mater Des. 2013;44:535–539. doi: 10.1016/j.matdes.2012.08.048
  • Fu Z, Chen W, Fang S, et al. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J Alloys Comp. 2013;553:316–323. doi: 10.1016/j.jallcom.2012.11.146
  • Koundinya NTBN, Sajith Babu C, Sivaprasad K, et al. Phase evolution and thermal analysis of nanocrystalline AlCrCuFeNiZn high entropy alloy produced by mechanical alloying. J Mater Eng Perform. 2013;22:3077–3084. doi: 10.1007/s11665-013-0580-5
  • Praveen S, Murty BS, Kottada RS. Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater Sci Eng A. 2012;534:83–89. doi: 10.1016/j.msea.2011.11.044
  • Qiu XW, Zhang YP, Liu CG. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings. J Alloys Comp. 2014;585:282–286. doi: 10.1016/j.jallcom.2013.09.083
  • Murali M, Kumaresh Babu SP, Jeevan Krishna B, et al. Synthesis and characterization of AlCoCrCuFeZnx high-entropy alloy by mechanical alloying. Prog Nat Sci Mater Int. 2016;26:380–384. doi: 10.1016/j.pnsc.2016.06.008
  • Igor M, Jan C, Zuzana K, et al. Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy. Mater Sci Eng A. 2017;701:370–380. doi: 10.1016/j.msea.2017.06.086
  • Guo S. Phase selection rules for cast high entropy alloys: an overview. Mater Sci Tech. 2015;31(10):1223–1230. doi: 10.1179/1743284715Y.0000000018
  • Ji X. Relative effect of electronegativity on formation of high entropy alloys. Int J Cast Metals Res. 2015;28(4):229–233. doi: 10.1179/1743133615Y.0000000004
  • Sun HF, Wang CM, Zhang X, et al. Study of the microstructure and performance of high-entropy alloys AlxFeCuCoNiCrTi. Mater Res Innov. 2015;19:S8–89. doi: 10.1179/1433075X14Y.0000000229
  • Yurchenko N, Stepanov N, Salishchev G. Laves-phase formation criterion for high-entropy alloys. Energy Mater. 2016;11:17–22.
  • Eißmann N, Klöden B, Weißgärber T, et al. High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metall. 2017;60:184–197. doi: 10.1080/00325899.2017.1318480
  • Niu B, Ji W, Li F, et al. Alloying and thermal behaviour of CoCrFeNiMn0.5Ti0.5 high-entropy alloy synthesised by mechanical alloying. Mater Sci Technol. 2016;32:94–98. doi: 10.1179/1743284715Y.0000000124
  • Ji W, Zhengyi F, Wang W, et al. Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J Alloys Comp. 2014;589:61–66. doi: 10.1016/j.jallcom.2013.11.146
  • Wang C, Ji W, Fu Z. Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. J Adv Powd Tech. 2014;25:1334–1338. doi: 10.1016/j.apt.2014.03.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.