184
Views
22
CrossRef citations to date
0
Altmetric
Regular papers

Hot rolling of spark-plasma-sintered pure aluminium

, &
Pages 285-292 | Received 14 Feb 2018, Accepted 15 May 2018, Published online: 16 Jul 2018

References

  • Guillon O, Gonzalez-Julian J, Dargatz B, et al. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater. 2014;16(7): 830–849. doi: 10.1002/adem.201300409
  • Tokita M. Trends in advanced SPS spark plasma sintering systems and technology. J Soc Powd Technol-Jap. 1993;30(11): 790–804. doi: 10.4164/sptj.30.11_790
  • Cavaliere P, Sadeghi B, Shabani A. Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J Mater Sci. 2017;52(14):8618–8629. doi: 10.1007/s10853-017-1086-6
  • Ghesmati Tabrizi S, Sajjadi SA, Babakhani A, et al. Influence of spark plasma sintering and subsequent hot rolling on microstructure and flexural behavior of in-situ TiB and TiC reinforced Ti6Al4V composite. Mater Sci Eng A. 2015;624:271–278. doi: 10.1016/j.msea.2014.11.036
  • Ghesmati Tabrizi S, Sajjadi SA, Babakhani A, et al. Analytical and experimental investigation of the effect of SPS and hot rolling on the microstructure and flexural behavior of Ti6Al4V matrix reinforced with in-situ TiB and TiC. J Alloys Compd. 2017;692:734–744. doi: 10.1016/j.jallcom.2016.09.026
  • Gopalan R, Sepehri-Amin H, Suresh K, et al. Anisotropic Nd–Fe–B nanocrystalline magnets processed by spark plasma sintering and in situ hot pressing of hydrogenation–decomposition–desorption–recombination powder. Scripta Mater. 2009;61(10):978–981. doi: 10.1016/j.scriptamat.2009.08.007
  • Kwon H, Estili M, Takagi K, et al. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon N Y. 2009;47(3):570–577. doi: 10.1016/j.carbon.2008.10.041
  • Li XP, Liu CY, Ma MZ, et al. Microstructures and mechanical properties of AA6061–SiC composites prepared through spark plasma sintering and hot rolling. Mater Sci Eng A. 2016;650:139–144. doi: 10.1016/j.msea.2015.10.015
  • Kurita H, Kwon H, Estili M, et al. Multi-walled carbon nanotube-aluminum matrix composites prepared by combination of hetero-agglomeration method, spark plasma sintering and hot extrusion. Mater Trans. 2011;52(10):1960–1965. doi: 10.2320/matertrans.M2011146
  • Alvi MH, Cheong SW, Suni JP, et al. Cube texture in hot-rolled aluminum alloy 1050 (AA1050) – nucleation and growth behavior. Acta Mater. 2008;56(13):3098–3108. doi: 10.1016/j.actamat.2008.02.037
  • Liu WC, Man CS, Raabe D, et al. Effect of hot and cold deformation on the recrystallization texture of continuous cast AA 5052 aluminum alloy. Scripta Mater. 2005;53(11):1273–1277. doi: 10.1016/j.scriptamat.2005.07.040
  • Sarma GB, Radhakrishnan B. Modeling microstructural effects on the evolution of cube texture during hot deformation of aluminum. Mater Sci Eng A. 2004;385(1):91–104. doi: 10.1016/j.msea.2004.06.007
  • Wang W, Helbert A-L, Baudin T, et al. Reinforcement of the cube texture during recrystallization of a 1050 aluminum alloy partially recrystallized and 10% cold-rolled. Mater Char. 2012;64:1–7. doi: 10.1016/j.matchar.2011.11.008
  • Fundenberger J-J, Beausir B. ATOM and JTEX.
  • Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. Amsterdam: Elsevier; 2012.
  • Zabihi M, Toroghinejad MR, Shafyei A. Shear punch test in Al/alumina composite strips produced by powder metallurgy and accumulative roll bonding. Mater Sci Eng A. 2016;667:383–390. doi: 10.1016/j.msea.2016.04.097
  • Alvi MH, Cheong S, Suni J, et al. Cube texture in hot-rolled aluminum alloy 1050 (AA1050) – nucleation and growth behavior. Acta Mater 2008;56(13):3098–3108. doi: 10.1016/j.actamat.2008.02.037
  • Sathiaraj G, Ahmed M, Bhattacharjee P. Microstructure and texture of heavily cold-rolled and annealed fcc equiatomic medium to high entropy alloys. J Alloys Compd. 2016;664:109–119. doi: 10.1016/j.jallcom.2015.12.172
  • Sadeghi B, Shamanian M, Ashrafizadeh F, et al. Microstructural behaviour of spark plasma sintered composites containing bimodal micro- and nano-sized Al2O3 particles. Powder Metall. 2018;61(1):50–63. doi: 10.1080/00325899.2017.1391504
  • Guillon O, Gonzalez-Julian J, Dargatz B, et al. Field-Assisted sintering technology/spark plasma sintering: mechanisms. Mater Technol Develop Adv Eng Mater. doi: 10.1002/adem.201300409.
  • Kwon H, Park DH, Park Y, et al. Spark plasma sintering behavior of pure aluminum depending on various sintering temperatures. Met Mater Int. 2010;16(1):71–75. doi: 10.1007/s12540-010-0071-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.