104
Views
3
CrossRef citations to date
0
Altmetric
Regular papers

Effects of chromium sources on the microstructure and properties of TiC-steel composites

, , , , &
Pages 334-341 | Received 12 Dec 2017, Accepted 21 Apr 2018, Published online: 16 Aug 2018

References

  • Ortner HM, Ettmayer P, Kolaska H. The history of the technological progress of hardmetals. Int J Refract Met Hard Mater. 2014;44:148–159. doi: 10.1016/j.ijrmhm.2013.07.014
  • Razavi M, Yaghmaee MS, Rahimipour MR, et al. The effect of production method on properties of Fe-TiC composite. Int J Miner Process. 2010;94:97–100. doi: 10.1016/j.minpro.2010.01.002
  • Wang Z, Lin T, He XB, et al. Fabrication and properties of the TiC reinforced high-strength steel matrix composite. Int J Refract Met Hard Mater. 2016;58:14–21. doi: 10.1016/j.ijrmhm.2016.03.013
  • Parashivamurthy KI, Kumar RK, Seetharamu S, et al. Review on TiC reinforced steel composites. J Mater Sci. 2001;36:4519–4530. doi: 10.1023/A:1017947206490
  • Rajabi A, Ghazali MJ, Daud AR. Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet – a review. Mater Des. 2015;67:95–106. doi: 10.1016/j.matdes.2014.10.081
  • Spooren J, Kim E, Horckmans L, et al. In-situ chromium and vanadium recovery of landfilled ferrochromium and stainless steel slags. Chem Eng J. 2016;303:359–368. doi: 10.1016/j.cej.2016.05.128
  • Michelic SK, Loder D, Reip T, et al. Characterization of TiN, TiC and Ti(C,N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies. Mater Charact. 2015;100:61–67. doi: 10.1016/j.matchar.2014.12.014
  • Carmezim MJ, Simões AM, Montemor MF, et al. Capacitance behavior of passive films on ferritic and austenitic stainless steel. Corros Sci. 2005;47:581–591. doi: 10.1016/j.corsci.2004.07.002
  • Zhou Y, Chen J, Xu Y, et al. Effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Cl-containing environment. J Mater Sci Technol. 2013;29:168–174. doi: 10.1016/j.jmst.2012.12.013
  • Alamr A, Bahr DF, Jacroux M. Effects of alloy and solution chemistry on the fracture of passive films on austenitic stainless steel. Corros Sci. 2006;48:925–936. doi: 10.1016/j.corsci.2005.02.018
  • Wiengmoon A, Pearce JTH, Chairuangsri T. Relationship between microstructure, hardness and corrosion resistance in 20 wt.% Cr, 27 wt.% Cr and 36 wt.% Cr high chromium cast irons. Mater Chem Phys. 2011;125:739–748. doi: 10.1016/j.matchemphys.2010.09.064
  • Bai Y, Xing J, Ma S, et al. Effect of 4 wt.% Cr on microstructure, corrosion resistance and tribological properties of Fe3Al-20 wt.% Al2O3 composites. Mater Charact. 2013;78:69–78. doi: 10.1016/j.matchar.2013.01.014
  • Cai LX, Wang CM, Wang HM. Laser cladding for wear-resistant Cr-alloyed Ni2Si-NiSi intermetallic composite coatings. Mater Lett. 2003;57:2914–2918. doi: 10.1016/S0167-577X(02)01396-4
  • Zhang M, Qu KL, Luo SX, et al. Effect of Cr on the microstructure and properties of TiC-TiB2 particles reinforced Fe-based composite coatings. Surf Coat Technol. 2017;316:131–137. doi: 10.1016/j.surfcoat.2017.03.026
  • Zhang H, Zou Y, Zou ZD, et al. Effects of chromium addition on microstructure and properties of TiC-VC reinforced Fe-based laser cladding coatings. J Alloys Compd. 2014;614:107–112. doi: 10.1016/j.jallcom.2014.06.073
  • Zhang H, Zou Y, Zou ZD, et al. Microstructures and properties of low-chromium high corrosion-resistant TiC-VC reinforced Fe-based laser cladding layer. J Alloys Compd. 2015;622:62–68. doi: 10.1016/j.jallcom.2014.10.012
  • Basson J, Daavittila J. High carbon ferrochrome technology. Handbook of Ferroalloys. 2013;1:317–363. doi: 10.1016/B978-0-08-097753-9.00009-5
  • Li W, Chen J, Guo L, et al. Electromagnetic properties of high-carbon ferrochrome powders decarburized in solid phase by microwave heating. Mater Sci Eng B. 2014;189:58–63. doi: 10.1016/j.mseb.2014.08.006
  • Kang Y, Han J, Kim H, et al. Effect of oxygen on the wettability of 304L stainless steel by liquid Ag-Cu eutectic alloy. J Mater Sci. 2016;51:1713–1721. doi: 10.1007/s10853-015-9511-1
  • Gierl-Mayer C, Calderon RDO, Danninger H. The role of oxygen transfer in sintering of Low alloy steel powder compacts: A review of the “internal getter” effect. JOM. 2016;3:1–8.
  • Bergman O. Influence of oxygen partial pressure in sintering atmosphere on properties of Cr-Mo prealloyed powder metallurgy steel. Powder Metall. 2007;50(3):243–249. doi: 10.1179/174329007X205073
  • Garrison WM. The effect of silicon and nickel additions on the sulfide spacing and fracture toughness of a 0.4 carbon low alloy steel. Metall Trans A. 1986;17(4):669–678. doi: 10.1007/BF02643986
  • Tomita Y, Morioka K. Effect of microstructure on transformation-induced plasticity of silicon-containing low-alloy steel. Mater Charact. 1997;38:243–250. doi: 10.1016/S1044-5803(97)00067-3
  • Nazari KA, Shabestari SG. Effect of micro alloying elements on the interfacial reactions between molten aluminum alloy and tool steel. J Alloys Compd. 2009;478:523–530. doi: 10.1016/j.jallcom.2008.11.127
  • Hong SH, Ryu HJ, Baek WH. Microstructure and mechanical properties of mechanically alloyed and solid-state sintered tungsten heavy alloys. Mater Sci Eng A. 2000;291:91–96. doi: 10.1016/S0921-5093(00)00968-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.