427
Views
17
CrossRef citations to date
0
Altmetric
Regular papers

Microstructural evolution and mechanical properties of AlCrFeNiCoC high entropy alloy produced via spark plasma sintering

, , &
Pages 61-70 | Received 05 Sep 2018, Accepted 27 Jan 2019, Published online: 08 Feb 2019

References

  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081
  • Ghazi SS, Ravi KR. Phase-evolution in high entropy alloys: role of synthesis route. Intermetallics. 2016;73:40–42. doi: 10.1016/j.intermet.2016.03.002
  • Ji W, Wang W, Wang H, et al. Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics. 2015;56:24–27. doi: 10.1016/j.intermet.2014.08.008
  • Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9
  • Shabani A, Toroghinejad MR, Shafyei A, et al. Effect of cold-rolling on microstructure, texture and mechanical properties of an equiatomic FeCrCuMnNi high entropy alloy. Materialia. 2018. doi: 10.1016/j.mtla.2018.06.004
  • Moazzen P, Toroghinejad MR, Karimzadeh F, et al. Influence of zirconium addition on the microstructure, thermodynamic stability, thermal stability and mechanical properties of mechanical alloyed spark plasma sintered (MA-SPS) FeCoCrNi high entropy alloy. Powder Met. 2018;61:405–416. doi: 10.1080/00325899.2018.1528748
  • Tung C-C, Yeh J-W, Shun T-t, et al. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater Lett. 2007;61(1):1–5. doi: 10.1016/j.matlet.2006.03.140
  • Zhang KB, Fu ZY, Zhang JY, et al. Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J Alloys Compd. 2010;495(1):33–38. doi: 10.1016/j.jallcom.2009.12.010
  • Senkov ON, Miracle DB, Chaput KJ, et al. Development and exploration of refractory high entropy alloys–a review. J Mater Res. 2018;33(19):3092–3128. doi: 10.1557/jmr.2018.153
  • Wei S, Zhu J, Xu L, et al. Effects of carbon on microstructures and properties of high vanadium high-speed steel. Mater Des. 2006;27(1):58–63. doi: 10.1016/j.matdes.2004.09.027
  • Liu Z, Chen J, Liang W, et al. Influence of carbon content on corrosion resistance performance of weathering steel. Adv Mater Res. 2012;580:465–468. doi: 10.4028/www.scientific.net/AMR.580.465
  • Li C, Wang B, Zhang Y, et al. Effects of C element on microstructure and mechanical behavior of AlCrFeMnNi high-entropy alloy. doi: 10.2991/aeece-16.2016.3
  • Chen J, Yao Z, Wang X, et al. Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy. Mater Chem Phys. 2018;210:136–145. doi: 10.1016/j.matchemphys.2017.08.011
  • Praveen S, Murty BS, Kottada Ravi S. Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater Sci Eng. 2012;A534:83–89. doi: 10.1016/j.msea.2011.11.044
  • Guo S, Ng C, Wang Z, et al. Solid solutioning in equiatomic alloys: limit set by topological instability. J Alloys Compd. 2014;583:410–413. doi: 10.1016/j.jallcom.2013.08.213
  • Liu WH, Lu ZP, He JY, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 2016;116:332–342. doi: 10.1016/j.actamat.2016.06.063
  • Shun TT, Chang LY, Shiu MH. Microstructures and mechanical properties of multi principal component CoCrFeNiTix alloy. Mater Sci Eng. 2012;A556:170–174. doi: 10.1016/j.msea.2012.06.075
  • Eisman N, Klöden B, Weissgärber T, et al. High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metall. 2017;60(3):184–197. doi: 10.1080/00325899.2017.1318480
  • Zhang A, Han J, Meng J, et al. Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture. Mater Lett. 2016;181:82–85. doi: 10.1016/j.matlet.2016.06.014
  • Riva S, Brown SGR, Lavery NP, et al. Spark plasma sintering of high entropy alloys. In: P Cavaliere, editor. Spark plasma sintering of materials: advances in processing and applications. Springer Sci. Publ. doi: 10.1007/978-3-030-05327-7_18
  • Mohanty S, Gurao NP, Biswas K. Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying. Mater Sci Eng A. 2014;617:211–218. doi: 10.1016/j.msea.2014.08.046
  • Wang C, Ji W, Fu Z. Mechanical alloying and spark plasma sintering of CoCrFeN-iMnAl high-entropy alloy. Adv Powder Technol. 2014;25(4):1334–1338. doi: 10.1016/j.apt.2014.03.014
  • Ji W, Fu Z, Wang W, et al. Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J Alloys Compd. 2014;589:61–66. doi: 10.1016/j.jallcom.2013.11.146
  • Peng Y, Chu J, Dong J. Compressive behavior and constitutive model of austenitic stainless steel S30403 in high strain range. Materials (Basel). 2018;11(6):1023. doi: 10.3390/ma11061023
  • Chen Y-L, Ya HH, Hsieh C-A, et al. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J Alloys Compd. 2009;481(1):768–775. doi: 10.1016/j.jallcom.2009.03.087
  • Chen W, Fu Z, Fang S, et al. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0. 3Al0. 7 high entropy alloy. Mater Des. 2013;51:854–860. doi: 10.1016/j.matdes.2013.04.061
  • Fang S, Chen W, Fu Z. Microstructure and mechanical properties of twinned Al0. 5CrFeNiCo0. 3C0. 2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater Des. 2014;54:973–979. doi: 10.1016/j.matdes.2013.08.099
  • Munir ZA, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci. 2006;41(3):763–777. doi: 10.1007/s10853-006-6555-2
  • Cavaliere P, Sadeghi B, Shabani A. Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J Mater Sci. 2017;52(14):8618–8629. doi: 10.1007/s10853-017-1086-6
  • Sadeghi B, Shamanian M, Ashrafizadeh F, et al. Influence of Al2O3 Nanoparticles on microstructure and strengthening mechanism of Al-based nanocomposites produced via spark plasma sintering. J Mater Eng Perform. 2017;26(6):2928–2936. doi: 10.1007/s11665-017-2699-2
  • Sadeghi B, Shamanian M, Ashrafizadeh F, et al. Microstructural behaviour of spark plasma sintered composites containing bimodal micro- and nano-sized Al2O3 particles. Powder Met. 2018;61(1):50–63. doi: 10.1080/00325899.2017.1391504
  • Sadeghi B, Cavaliere P, Perrone A. Effect of Al2 O3, SiO2 and carbon nanotubes on the microstructural and mechanical behavior of spark plasma sintered aluminum based nanocomposites. Particul Sci Technol. doi: 10.1080/02726351.2018.1457109
  • Cavaliere P, Jahantigh F, Shabani A, et al. Influence of SiO2 nanoparticles on the microstructure and mechanical properties of Al matrix nanocomposites fabricated by spark plasma sintering. Composites B. 2018;146:60–68. doi: 10.1016/j.compositesb.2018.03.045
  • Xu R, Tan Z, Xiong D, et al. Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling. Composites A. 2017;96:57–66. doi: 10.1016/j.compositesa.2017.02.017
  • Jiang L, Li Z, Fan G, et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon. 2012;50(5):1993–1998. doi: 10.1016/j.carbon.2011.12.057
  • Fan G, Xu R, Zhanqiu Tan DZ, et al. Development of flake powder metallurgy in fabricating metal matrix composites: a review. Acta Metall Sin (English Lett). 2014;27(5):806–815. doi: 10.1007/s40195-014-0148-x
  • Yan FK, Liu GZ, Tao NR, et al. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles. Acta Mater. 2012;60(3):1059–1071. doi: 10.1016/j.actamat.2011.11.009
  • Lin CM, Tsai HL. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics. 2011;19(3):288–294. doi: 10.1016/j.intermet.2010.10.008
  • Wang W-R, Wang W-L, Wang S-C, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics. 2012;26:44–51. doi: 10.1016/j.intermet.2012.03.005
  • Reed TB. Free energy of formation of binary compounds: an atlas of charts for high-temperature chemical calculations. Cambridge (MA): MIT Press; 1971.
  • He JY, Liu WH, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014;62:105–113. doi: 10.1016/j.actamat.2013.09.037
  • Kao Y-F, Chen S-K, Chen T-J, et al. Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J Alloys Compd. 2011;509(5):1607–1614. doi: 10.1016/j.jallcom.2010.10.210
  • Zhang Y, Yang X, Liaw P. Alloy design and properties optimization of high-entropy alloys. JOM. 2012;64(7):830–838. doi: 10.1007/s11837-012-0366-5
  • Yeh J-W, Chen S-K, Lin S-J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303. doi: 10.1002/adem.200300567
  • Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys. 2012;132(2-3):233–238. doi: 10.1016/j.matchemphys.2011.11.021
  • Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans. 2005;46(12):2817–2829. doi: 10.2320/matertrans.46.2817
  • Zhang LC, Kim KB, Yu P, et al. Amorphization in mechanically alloyed (Ti, Zr, Nb)–(Cu, Ni)–Al equiatomic alloys. J Alloys Compd. 2007;428(1-2):157–163. doi: 10.1016/j.jallcom.2006.03.092

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.