239
Views
7
CrossRef citations to date
0
Altmetric
Regular papers

Effects of Cu particle size on CuSnFeNi/diamond composite processed using hybrid microwave sintering

, ORCID Icon & ORCID Icon
Pages 124-132 | Received 08 Sep 2018, Accepted 30 Mar 2019, Published online: 12 Apr 2019

References

  • Xu XP, Tie XR, Wu HR. The effects of a Ti coating on the performance of metal-bonded diamond composites containing rare earth. Int J Refract Metals Hard Mater. 2007;25:244–249. doi: 10.1016/j.ijrmhm.2006.06.002
  • Yadav RS, Yadava V. Experimental investigations on electrical discharge diamond peripheral surface grinding (EDDPSG) of hybrid metal matrix composite. J Manuf Process. 2017;27:241–251. doi: 10.1016/j.jmapro.2017.04.004
  • Hung NP, Zhong ZW, Zhong CH. Grinding of metal matrix composites reinforced with silicon-carbide particles. Mater Manuf Process. 1997;12:1075–1091. doi: 10.1080/10426919708935205
  • Yehia HM, El-Kady O, Abu-Oqail A. Effect of diamond additions on the microstructure, physical and mechanical properties of WC-TiC-Co/Ni nano-composite. Int J Refract Met Hard Mater. 2018;71:198–205. doi: 10.1016/j.ijrmhm.2017.11.018
  • Chen G, Yang W, Xin L, et al. Mechanical properties of Al matrix composite reinforced with diamond particles with W coatings prepared by the magnetron sputtering method. J Alloys Compd. 2018;735:777–786. doi: 10.1016/j.jallcom.2017.11.183
  • Gupta P, Kumar D, Parkash O, et al. Effect of sintering on wear characteristics of Fe-Al2O3 metal matrix composites. Proc Inst Mech Eng Part J: J Eng Tribol. 2014;228(3):362–368. doi: 10.1177/1350650113508934
  • Garg P, Gupta P, Kumar D, et al. Structural and mechanical properties of graphene reinforced aluminum matrix composites. J Mater Environ Sci. 2016;7(5):1461–1473.
  • Gupta P, Kumar D, Parkash OM, et al. Structural and mechanical behaviour of 5% Al2O3-reinforced Fe metal matrix composites (MMCs) produced by powder metallurgy (P/M) route. Bull Mater Sci. 2013;36:859–868. doi: 10.1007/s12034-013-0545-1
  • Jha P, Gupta P, Kumar D, et al. Synthesis and characterization of Fe–ZrO2 metal matrix composites. J Compos Mater. 2013;48:2107–2115. doi: 10.1177/0021998313494915
  • Miranda G, Ferreira P, Buciumeanu M, et al. Microstructure, mechanical and wear behaviors of hot-pressed copper-nickel-based materials for diamond cutting tools. J Mater Eng Perform. 2017;26:4046–4055. doi: 10.1007/s11665-017-2819-z
  • Twomey B, Breen A, Byrne G, et al. Rapid discharge sintering of nickel-diamond metal matrix composites. J Mater Process Technol. 2011;211:1210–1216. doi: 10.1016/j.jmatprotec.2011.02.002
  • Egan D, Engels J. The use of coated diamonds in diamond impregnated tools. Ind Diamond Rev. 2004;4:34–37.
  • Lee PW. Powder metal technologies and applications. Materials Park (OH): ASM International; 1998.
  • Manière C, Zahrah T, Olevsky EA. Inherent heating instability of direct microwave sintering process: sample analysis for porous 3Y-ZrO2. Scripta Mater. 2017;128:49–52. doi: 10.1016/j.scriptamat.2016.10.008
  • Roy R, Agrawal D, Cheng J, et al. Full sintering of powdered-metal bodies in a microwave field. Nature. 1999;399:668–670. doi: 10.1038/21390
  • Clark DE, Sutton WH. Microwave processing of materials. Annu Rev Mater Sci. 1996;26:299–331. doi: 10.1146/annurev.ms.26.080196.001503
  • Oghbaei M, Mirzaee O. Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloy Compd. 2010;494:175–189. doi: 10.1016/j.jallcom.2010.01.068
  • Demirskyi D, Agrawal D, Raguya A. Tough ceramics by microwave sintering of nanocrystalline titanium diboride ceramics. Ceram Int. 2014;40:1303–1310. doi: 10.1016/j.ceramint.2013.07.010
  • Shi J, Cheng Z, Barriere T, et al. Multiphysic coupling and full cycle simulation of microwave sintering applied to a ceramic compact obtained by ceramic injection moulding. Powder Metall. 2017 2017;60(5):404–414. doi: 10.1080/00325899.2017.1317451
  • Baghani M, Aliofkhazraei M, Poursalehi R. Low temperature microwave sintering of Cu0.7Ni0.3(Al2O3) nanocomposite. Powder Metall. 2017 2017;60(1):73–83. doi: 10.1080/00325899.2016.1275097
  • Yuhang C, Yiping W, Wenxuan Z, et al. Preparation and properties of diamond-CuTi composite sintered by microwave sintering. J Mater Sci Lett. 1999;18:1933–1935. doi: 10.1023/A:1006641400866
  • Gu Q, Peng J, Xu L, et al. Preparation of Ti-coated diamond particles by microwave heating. Appl Surf Sci. 2016;390:909–916. doi: 10.1016/j.apsusc.2016.08.168
  • Guixia D, Qiuxiang L, Li D, et al. Relationship between diamond particle size and thermal conductivity of Cu-diamond composites. Adv Mat Res. 2014;997:415–418.
  • Fernandez CP, Zabotto FL, Garcia D, et al. In situ sol gel co-synthesis under controlled pH and microwave sintering of PZT/CoFe2O4 magnetoelectric composite ceramics. Ceram Int. 2016;42:3239–3249. doi: 10.1016/j.ceramint.2015.10.115
  • Khot SS, Shinde NS, Basavaiah N, et al. Magnetic properties of LiZnCu ferrite synthesized by the microwave sintering method. J Magn Magn Mater. 2015;374:182–186. doi: 10.1016/j.jmmm.2014.08.039
  • Ertugrul O, Park HS, Onel K, et al. Effect of particle size and heating rate in microwave sintering of 316L stainless steel. Powder Technol. 2014;253:703–709. doi: 10.1016/j.powtec.2013.12.043
  • Hassan MN, Mahmoud MM, Link G, et al. Sintering of naturally derived hydroxyapatite using high frequency microwave processing. J Alloy Compd. 2016;682:107–114. doi: 10.1016/j.jallcom.2016.04.266
  • Tun KS, Gupta M. Development of magnesium/(yttria plus nickel) hybrid nanocomposites using hybrid microwave sintering: microstructure and tensile properties. J Alloy Compd. 2009;487:76–82. doi: 10.1016/j.jallcom.2009.07.117
  • Guan CL, Sun NN. Synthesis and tribological properties of high purity Ti2SC nanolamellas by microwave hybrid heating. J Alloy Compd. 2017;699:25–30. doi: 10.1016/j.jallcom.2016.12.329
  • Tarat A, Nettle CJ, Bryant DTJ, et al. Microwave-assisted synthesis of layered basic zinc acetate nanosheets and their thermal decomposition into nanocrystalline ZnO. Nanoscale Res Lett. 2014;9:1–8. doi: 10.1186/1556-276X-9-11
  • Ebadzadeh T, Valefi M. Microwave-assisted sintering of zircon. J Alloy Compd. 2008;448:246–249. doi: 10.1016/j.jallcom.2007.02.032
  • Cristofolini I, Pederzini G, Rambelli A, et al. Densification and deformation during uniaxial cold compaction of stainless steel powder with different particle size. Powder Metall. 2016 2016;59(1):73–84. doi: 10.1080/00325899.2015.1114747
  • Cheng YL, Cui ZQ, Cheng LX, et al. Effect of particle size on densification of pure magnesium during spark plasma sintering. Adv Powder Technol. 2017;28:1129–1135. doi: 10.1016/j.apt.2017.01.017
  • Liu J, Xiong J, Guo Z, et al. Effect of graphite size on the tribological behavior of Ti (C, N)-based cermets self-mated wear pairs. Int J Refract Metals Hard Mater. 2017;64:83–89. doi: 10.1016/j.ijrmhm.2017.01.014
  • Park DY, Lee GM, Kwon Y-S, et al. Investigation of powder size effects on sintering of powder injection moulded 17-4PH stainless steel. Powder Metall. 2017;60(2):139–148. doi: 10.1080/00325899.2017.1278911
  • Sun JL, Zhao J, Li ZL, et al. Effects of particle size distribution and sintering parameters on microstructure and mechanical properties of functionally graded YG8-TiCVC-Cr3C2-Co hard alloys. Ceram Int. 2017;43:2686–2696. doi: 10.1016/j.ceramint.2016.11.086
  • Sadovnikov SI, Gusev AI. Effect of particle size on the thermal expansion of nanostructured lead sulfide films. J Alloy Compd. 2014;610:196–202. doi: 10.1016/j.jallcom.2014.04.220
  • Shongwe MB, Ramakokovhu MM, Diouf S, et al. Effect of starting powder particle size and heating rate on spark plasma sintering of Fe-Ni alloys. J Alloy Compd. 2016;678:241–248. doi: 10.1016/j.jallcom.2016.03.270
  • Sun JL, Zhao J, Li ZL, et al. Effects of particle size distribution and sintering parameters on microstructure and mechanical properties of functionally graded YG8-TiCVC-Cr3C2-Co hard alloys. Ceram Int. 2017;43:2686–2696. doi: 10.1016/j.ceramint.2016.11.086
  • Reddy MP, Ubaid F, Shakoor RA, et al. Effect of reinforcement concentration on the properties of hot extruded Al-Al2O3 composites synthesized through microwave sintering process. Mater Sci Eng A. 2017;696:60–69. doi: 10.1016/j.msea.2017.04.064
  • Touloukian YS, Powell RW, Ho CY, et al. Thermal conductivity metallic elements and alloys, vol. 1. New York: IFI/Pienum Data Corporation; 1970; pp68, pp156, pp237, pp389.
  • Abyzov AM, Shakhov FM, Averkin AI, et al. Mechanical properties of a diamond–copper composite with high thermal conductivity. Mater Des. 2015;87:527–539. doi: 10.1016/j.matdes.2015.08.048
  • Guo YL, Yi JH, Luo SD, et al. Fabrication of W-Cu composites by microwave infiltration. J Alloys Compd. 2010;492:L75–L78. doi: 10.1016/j.jallcom.2009.12.011
  • Nanda KK. Liquid-drop model for the surface energy of nanoparticles. Phys Lett A. 2012;376:1647–1649. doi: 10.1016/j.physleta.2012.03.055
  • Buryachenko VA, Kreher WS. Internal residual stresses in heterogeneous solids – a statistical theory for particulate composites. J Mech Phys Solids. 1995;43:1105–1125. doi: 10.1016/0022-5096(95)00029-I
  • Wong CP, Bollampally RS. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci. 1999;74:3396–3403. doi: 10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3
  • Hall EO. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc London Sect B. 1951;64:747–753. doi: 10.1088/0370-1301/64/9/303
  • Chokshi AH, Rosen A, Karch J, et al. On the validity of the Hall-Petch relationship in nanocrystalline materials. Scr Metall. 1989;23:1679–1683. doi: 10.1016/0036-9748(89)90342-6
  • Liu WH, Wu Y, He JY, et al. Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Mater. 2013;68:526–529. doi: 10.1016/j.scriptamat.2012.12.002
  • Yuan W, Panigrahi SK, Su JQ, et al. Influence of grain size and texture on Hall–Petch relationship for a magnesium alloy. Scripta Mater. 2011;65:994–997. doi: 10.1016/j.scriptamat.2011.08.028
  • Hansen N. Hall–Petch relation and boundary strengthening. Scripta Mater. 2004;51:801–806. doi: 10.1016/j.scriptamat.2004.06.002
  • Valiev RZ, Chmelik F, Bordeaux F, et al. The Hall-Petch relation in submicro-grained Al-1.5% Mg alloy. Scr Metall Mater. 1992;27:855–860. doi: 10.1016/0956-716X(92)90405-4
  • Xu H, Zang J, Yang G, et al. High-efficiency grinding CVD diamond films by Fe-Ce containing corundum grinding wheels. Diam Relat Mater. 2017;80:5–13. doi: 10.1016/j.diamond.2017.10.002
  • Chon CH, Kihm KD, Lee SP, et al. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87:1–3. doi: 10.1063/1.2093936
  • Every AG, Tzou Y, Hasselman DPH, et al. The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metall Mater. 1992;40:123–129. doi: 10.1016/0956-7151(92)90205-S
  • Boomsma K, Poulikakos D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. Int J Heat Mass Tran. 2001;44:827–836. doi: 10.1016/S0017-9310(00)00123-X
  • Hasselman DPH, Johnson LF. Effective thermal conductivity of composites with Interfacial thermal Barrier resistance. J Compos Mater. 1987;21:508–515. doi: 10.1177/002199838702100602

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.