259
Views
4
CrossRef citations to date
0
Altmetric
Regular papers

Fabrication of a multi-phase porous high-temperature Mo–Si–B alloy by in situ reaction synthesis

, , & ORCID Icon
Pages 258-266 | Received 28 Feb 2019, Accepted 26 May 2019, Published online: 10 Jun 2019

References

  • Gao H, He Y, Shen P, et al. Porous FeAl intermetallics fabricated by elemental powder reactive synthesis. Intermetallics. 2009;17(12):1041–1046. doi: 10.1016/j.intermet.2009.05.007
  • Gao H, He Y, Zou J, et al. Pore structure control for porous FeAl intermetallics. Intermetallics. 2013;32:423–428. doi: 10.1016/j.intermet.2012.08.030
  • Gao H, He Y, Zou J, et al. Mechanical properties of porous Fe-Al intermetallics. Powder Metall. 2015;58(3):193–196. doi: 10.1179/1743290114Y.0000000107
  • Karczewski K, Stepniowski WJ, Salerno M. Fabrication of FeAl intermetallic foams by tartaric acid-assisted self-propagating high-temperature synthesis. Materials (Basel). 2018;11(4):621–627. doi: 10.3390/ma11040621
  • Liang Y, Yang F, Zhang L, et al. Reaction behavior and pore formation mechanism of TiAl-Nb porous alloys prepared by elemental powder metallurgy. Intermetallics. 2014;44(44):1–7. doi: 10.1016/j.intermet.2013.08.001
  • Hao G, Wang H, Li X. Novel double pore structures of TiAl produced by powder metallurgy processing. Mater Lett. 2015;142:11–14. doi: 10.1016/j.matlet.2014.11.135
  • Yang F, Zhang L, Lin J, et al. Pore structure and gas permeability of high Nb-containing TiAl porous alloys by elemental powder metallurgy for microfiltration application. Intermetallics. 2013;33(2):2–7. doi: 10.1016/j.intermet.2012.07.022
  • He Y, Jiang Y, Xu N, et al. Fabrication of Ti-Al micro/nanometer-sized porous alloys through the Kirkendall effect. Adv Mater. 2007;19(16):2102–2106. doi: 10.1002/adma.200602398
  • Kobashi M, Miyake S, Kanetake N. Hierarchical open cellular porous TiAl manufactured by space holder process. Intermetallics. 2013;42:32–34. doi: 10.1016/j.intermet.2013.04.017
  • Dong H, Jiang Y, He Y, et al. Formation of porous Ni-Al intermetallics through pressureless reaction synthesis. J Alloys Compd. 2009;484(1):907–913. doi: 10.1016/j.jallcom.2009.05.079
  • Ide T, Tane M, Nakajima H. Fabrication of lotus-type porous NiAl and Ni3Al intermetallic compounds. Solid State Phenomena. 2007;47:2116–2119.
  • Dong H, He Y, Jiang Y, et al. Effect of Al content on porous Ni-Al alloys. Mater Sci Eng A. 2011;528(13):4849–4855. doi: 10.1016/j.msea.2011.02.014
  • Wisutmethangoon S, Denmud N, Sikong L. Characteristics and compressive properties of porous NiTi alloy synthesized by SHS technique. Mater Sci Eng A. 2009;515(1–2):93–97. doi: 10.1016/j.msea.2009.02.055
  • Zheng Z, Jiang Y, Dong H, et al. Environmental corrosion resistance of porous TiAl intermetallic compounds. Trans Nonferrous Met Soc China. 2009;19(3):581–585. doi: 10.1016/S1003-6326(08)60316-7
  • Liang W, Jiang Y, Hongxing D, et al. The corrosion behavior of porous Ni3Al intermetallic materials in strong alkali solution. Intermetallics. 2011;19(11):1759–1765. doi: 10.1016/j.intermet.2011.06.016
  • Sun X, Kang Z, Zhang X, et al. A comparative study on the corrosion behavior of porous and dense NiTi shape memory alloys in NaCl solution. Electrochim Acta. 2011;56(18):6389–6396. doi: 10.1016/j.electacta.2011.05.019
  • Liao C, Yang J, He Y, et al. Electrochemical corrosion behavior of the carburized porous TiAl alloy. J Alloys Compd. 2015;619:221–227. doi: 10.1016/j.jallcom.2014.08.021
  • Shen P, Song M, Gao H, et al. Structural characteristics and high-temperature oxidation behavior of porous Fe-40 at. % Al Alloy. J Mater Sci. 2009;44(16):4413–4421. doi: 10.1007/s10853-009-3669-3
  • Dong H, Jiang Y, He Y, et al. Oxidation behavior of porous NiAl prepared through reactive synthesis. Mater Chem Phys. 2010;122(2–3):417–423. doi: 10.1016/j.matchemphys.2010.03.017
  • Golabgir M, Ebrahimi-Kahrizsangi R, Torabi O, et al. Fabrication and evaluation of oxidation resistance performance of open-celled Fe(Al) foam by space-holder technique. Adv Powder Technol. 2014;25(3):960–967. doi: 10.1016/j.apt.2014.01.020
  • Scherf A, Janda D, Baghaie Yazdi M, et al. Oxidation behavior of binary aluminium-rich Fe-Al alloys with a fine-scaled, lamellar microstructure. Oxidation Metals. 2015;83(5–6):559–574. doi: 10.1007/s11085-015-9535-6
  • Nowotny H, Dimakopoulou E, Kudielka H. Untersuchungen in den Dreistoffsystemen: Molybdän-Silizium-Bor, Wolfram-Silizium-Bor und in dem system: VSi2-TaSi2. Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften. 1957;88(2):180–192. doi: 10.1007/BF00901624
  • Chou TC, Nieh TG. Pesting of the high-temperature intermetallic MoSi2. JOM. 1993;45(12):15–21. doi: 10.1007/BF03222509
  • Mendiratta M, Parthasarathy T, Dimiduk D. Oxidation behavior of aMo-Mo3Si-Mo5SiB2 (T2) three phase system. Intermetallics. 2002;10(3):225–223. doi: 10.1016/S0966-9795(01)00118-2
  • Yoshimi K, Nakatani S, Suda T, et al. Oxidation behavior of Mo5SiB2-based alloy at elevated temperatures. Intermetallics. 2002;10(5):407–414. doi: 10.1016/S0966-9795(02)00013-4
  • Supatarawanich V, Johnson DR, Liu CT. Oxidation behavior of multiphase Mo-Si-B alloys. Intermetallics. 2004;12(7–9):721–725. doi: 10.1016/j.intermet.2004.02.011
  • Parthasarathy TA, Mendiratta MG, Dimiduk DM. Oxidation mechanisms in Mo-reinforced Mo5SiB2(T2)-Mo3Si alloys. Acta Mater. 2002;50(7):1857–1868. doi: 10.1016/S1359-6454(02)00039-3
  • Akinc M, Meyer MK, Kramer MJ, et al. Boron-doped molybdenum silicides for structural applications. Mater Sci Eng A. 1999;261(1):16–23. doi: 10.1016/S0921-5093(98)01045-4
  • Lemberg JA, Ritchie RO. Mo-Si-B alloys for ultrahigh-temperature structural applications. Adv Mater. 2012;24(26):3445–3480. doi: 10.1002/adma.201200764
  • Hasemann G, Bogomol I, Schliephake D, et al. Microstructure and creep properties of a near-eutectic directionally solidified multiphase Mo–Si–B alloy. Intermetallics. 2014;48:28–33. doi: 10.1016/j.intermet.2013.11.022
  • Middlemas MR, Cochran JK. The microstructural engineering of Mo-Si-B alloys produced by reaction synthesis. JOM. 2010;62(10):20–24. doi: 10.1007/s11837-010-0150-3
  • Zhang L, Pan K, Wang J, et al. Spark plasma sintering synthesis of intermetallic T2 in the Mo-Si-B system. Adv Powder Technol. 2013;24(6):913–920. doi: 10.1016/j.apt.2013.01.003
  • Majumdar S, Nges B D, Gorr B, et al. Mechanisms of oxide scale formation on yttrium-alloyed Mo-Si-B containing fine-grained microstructure. Corros Sci. 2015;90:76–88. doi: 10.1016/j.corsci.2014.09.017
  • Tortorici PC, Dayananda MA. Diffusion structures in Mo vs. Si solid-solid diffusion couples. Scripta Mater. 1998;38(12):1863–1869. doi: 10.1016/S1359-6462(98)00111-0
  • Tortorici PC, Dayananda MA. Growth of silicides and interdiffusion in the Mo-Si system. Metall Mater Trans A (Phys Metall Mater Sci). 1999;30A(3):545–550. doi: 10.1007/s11661-999-0046-4
  • Yoon JK, Lee JK, Lee KH, et al. Microstructure and growth kinetics of the Mo5Si3 and Mo3Si layers in MoSi2/Mo diffusion couple. Intermetallics. 2003;11(7):687–696. doi: 10.1016/S0966-9795(03)00068-2
  • German RM, Suri P, Park SJ. Review: liquid phase sintering. J Mater Sci. 2009;44(1):1–39. doi: 10.1007/s10853-008-3008-0
  • Kang HZ, Hu CT. Swelling behavior in reactive sintering of Fe-Al mixtures. Mater Chem Phys. 2004;88(2–3):264–272. doi: 10.1016/j.matchemphys.2004.03.001
  • Robertson IM, Schaffer GB. Swelling during liquid phase sintering of Ti-Ni alloys. Powder Metall. 2009;52(3):213–224. doi: 10.1179/174329009X380590
  • Liu Y, Chen L, Tang H, et al. Design of powder metallurgy titanium alloys and composites. Mater Sci Eng A. 2006;418(1):25–35. doi: 10.1016/j.msea.2005.10.057
  • Boehm A, Kieback B. Investigation of swelling behaviour of Ti-Al elemental powder mixtures during reaction sintering. Zeitschrift für Metallkunde. 1998;89(2):90–95.
  • Tanaka Y, Kajihara M, Watanabe Y. Growth behavior of compound layers during reactive diffusion between solid Cu and liquid Al. Mater Sci Eng A. 2007;445–446(6):355–363. doi: 10.1016/j.msea.2006.09.047
  • Kharatyan SL, Chatilyan HA, Galstyan GS. Growth kinetics of Mo3Si layer in the Mo5Si3/Mo diffusion couple. Thin Solid Films. 2008;516(15):4876–4881. doi: 10.1016/j.tsf.2007.09.010
  • Byun JY, Yoon JK, Kim GH, et al. Study on reaction and diffusion in the Mo-Si system by ZrO2 marker experiments. Scripta Mater. 2002;46(7):537–542. doi: 10.1016/S1359-6462(02)00029-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.