261
Views
7
CrossRef citations to date
0
Altmetric
Regular papers

Preparation and printability of high performance 15Cr13MoY alloy steel powder for direct laser deposition

ORCID Icon, , , , ORCID Icon &
Pages 218-228 | Received 03 Nov 2018, Accepted 09 Jun 2019, Published online: 25 Jun 2019

References

  • Jones J, Whittaker M, Buckingham R, et al. Microstructural characterisation of a nickel alloy processed via blown powder direct laser deposition (DLD). Mater Des. 2017;117:47–57. doi: 10.1016/j.matdes.2016.12.062
  • Zhang Y, Wu L, Guo X, et al. Additive manufacturing of metallic materials: a review. J Mater Eng Perform. 2017;7:1–13.
  • Bailey N S, Katinas C, Shi Y C. Laser direct deposition of AISI H13 tool steel powder with numerical modeling of solid phase transformation, hardness, and residual stresses. J Mater Process Tech. 2017;247:223–233. doi: 10.1016/j.jmatprotec.2017.04.020
  • Emamian A, Farshidianfar MH, Khajepour A. Thermal monitoring of microstructure and carbide morphology in direct metal deposition of Fe-Ti-C metal matrix composites. J Alloy Compd. 2017;710:20–28. doi: 10.1016/j.jallcom.2017.03.207
  • Wang G Y, Gu S N, Yang S. Microstructure and properties of tungsten heavy alloys fabricated by laser direct deposition. Mater Sci Technol. 2016;33:415–420. doi: 10.1080/02670836.2016.1221492
  • Conduit B, Illston T, Baker S, et al. Probabilistic neural network identification of an alloy for direct laser deposition. Mater Des. 2019;168:107644. doi: 10.1016/j.matdes.2019.107644
  • Zhou Y, Chen S Y, Chen X T, et al. The evolution of bainite and mechanical properties of direct laser deposition 12CrNi2 alloy steel at different laser power. Mater Sci Eng A. 2019;742:150–161. doi: 10.1016/j.msea.2018.10.092
  • Shi Q, Chen SY, Xia CF, et al. Preparation and printability of 24CrNiMo alloy steel po wder for selective laser melting fabricating brake disc. Powder Metall. 2017;61:73–80. doi: 10.1080/00325899.2017.1396019
  • Ma M M, Wang Z M, Zi WD, et al. Control of shape and performance for direct laser fabrication of precision large-scale metal parts with 316L stainless steel. Opt Laser Technol. 2013;45:209–216. doi: 10.1016/j.optlastec.2012.07.002
  • Emmelmann C, Herzog D, Kranz J. Design for laser additive manufacturing. Laser Addit Manuf. 2017;12:259–279. doi: 10.1016/B978-0-08-100433-3.00010-5
  • Liu R, Wang Z, Sparks T. Aerospace applications of laser additive manufacturing. Addit Manuf. 2017;12:351–371.
  • Zhang S, Wei Q S, Cheng L Y, et al. Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4 V implants fabricated by selective laser melting. Mater Des. 2014;63:185–193. doi: 10.1016/j.matdes.2014.05.021
  • Bai Y, Wang G, Williams CB. Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals. J Eng Ind. 2017;139:1–6.
  • Bhattiprolu V S, Johnson K W, Ozdemir O C, et al. Influence of feedstock powder and cold spray processing parameters on microstructure and mechanical properties of Ti-6Al-4 V cold spray depositions. Surf Coat Technol. 2018;335:1–12. doi: 10.1016/j.surfcoat.2017.12.014
  • Liu T, Leazer J D, Menon S K, et al. Microstructural analysis of gas atomized Al-Cu alloy feedstock powders for cold spray deposition. Surf Coat Technol. 2018;350:621–632. doi: 10.1016/j.surfcoat.2018.07.006
  • Hatami S, Lyckfeldt O, Tönnäng L, et al. Flow properties of tool steel powders for selective laser melting – influence of thermal and mechanical powder treatments. Powder Metall. 2017;60:353–362. doi: 10.1080/00325899.2017.1344451
  • Yang C, Lik J, Chau H, et al. Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process. Mater Chem Phys. 2017;202:151–158. doi: 10.1016/j.matchemphys.2017.09.014
  • Hausnerova B, Mukund B N, Rheological D S. Properties of gas and water atomized 17-4PH stainless steel MIM feedstocks: effect of powder shape and size. Powder Metall. 2017;312:152–158.
  • Ding P, Mao A, Zhang X, et al. Preparation, characterization and properties of multicomponent AlCoCrFeNi2.1 powder by gas atomization method. J Alloy Compd. 2017;712:609–614. doi: 10.1016/j.jallcom.2017.06.020
  • Yang M, Song C, Dai Y X, et al. Microstructural evolution of gas atomized Fe-25Cr-3.2C alloy powders. J Iron Steel Res Int. 2011;18:75–78. doi: 10.1016/S1006-706X(11)60027-7
  • ASTM B213-2013. Standard test methods for flow rate of metal powders using the hall flowmeter funnel.
  • ASTM B212-2013. Standard test method for apparent density of free-flowing metal powders using the hall flowmeter funnel.
  • Mukherjee T, Zuback J S, De A, et al. Printability of alloys for additive manufacturing. Sci Rep. 2016;6:1–6. doi: 10.1038/s41598-016-0001-8
  • Wei M, Chen S, Liang J, et al. Effect of atomization pressure on the breakup of TA15 titanium alloy powder prepared by EIGA method for laser 3D printing. Vacuum. 2017;143:185–194. doi: 10.1016/j.vacuum.2017.06.014
  • Yi H, Qi L H, Luo J, et al. Effect of the surface morphology of solidified droplet on remelting between neighboring aluminum droplets. Int J Mach Tool Manu. 2018;130:1–11. doi: 10.1016/j.ijmachtools.2018.03.006
  • Yi H, Qi L H, Luo J, et al. Hole-defects in soluble core assisted aluminum droplet printing: Metallurgical mechanisms and elimination methods. Appl Therm Eng. 2019;148:1183–1193. doi: 10.1016/j.applthermaleng.2018.12.013
  • Yi H, Qi L H, Luo J, et al. Direct fabrication of metal tubes with high-quality inner surfaces via droplet deposition over soluble cores. J Maters Process Tech. 2019;264:145–154. doi: 10.1016/j.jmatprotec.2018.09.004
  • Brooks A J, Ge J, Kirka M M, et al. Porosity detection in electron beam-melted Ti-6Al-4V using high-resolution neutron imaging and grating-based interferometry. Prog Additive Manuf. 2017;2:125–132. doi: 10.1007/s40964-017-0025-z
  • Cunningham R, Narra S P, Montgomery C, et al. Synchrotron-based X-ray microtomography characterization of the effect of processing variables on porosity formation in laser power-bed additive manufacturing of Ti-6Al-4V. JOM. 2017;69:479–484. doi: 10.1007/s11837-016-2234-1
  • Xia Q, Chen SY, Shi CF, et al. Microstructure and properties of ZrO2-reinforced 24CrNiMo alloy steel prepared by selective laser melting. Powder Metall. 2018;61:395–404. doi: 10.1080/00325899.2018.1515322
  • Chen G, Zhan S Y, Tan P, et al. A comparative study of Ti-6Al-4 V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Tech. 2018;333:38–46. doi: 10.1016/j.powtec.2018.04.013
  • Yi H, Qi L H, Luo J, et al. Pinhole formation from liquid metal microdroplets impact on solid surfaces. Appl Phys Lett. 2016;108:041601. doi: 10.1063/1.4940404
  • Sang L, Xu Y, Fang P, et al. The influence of cooling rate on the microstructure and phase fraction of gas atomized NiAl3 alloy powders during rapid solidification. Vacuum. 2018;157:354–360. doi: 10.1016/j.vacuum.2018.08.057
  • Yin G, Chen S, Liu Y, et al. Effect of nano-Y2O3 on microstructure and crack formation in laser direct-deposited in situ particle-reinforced Fe-based coatings. J Mater Eng Perform. 2018;27:1154–1167. doi: 10.1007/s11665-017-2949-3
  • Huang CP, Lin X, Liu FC, et al. High strength and ductility of 34CrNiMo6 steel produced by laser solid forming. J Mater Sci Technol. 2019;35(2):377–387. doi:10.1016/j.jmst.2018.09.062
  • Zhao ZP, Qiao GY, Tang L, et al. Fatigue properties of X80 pipeline steels with ferrite/bainite dual-phase microstructure. Mater Sci Eng A. 2016;657:96–103. doi: 10.1016/j.msea.2016.01.043
  • Guan MF, Hao Y. Fatigue crack growth behaviors in hot-rolled low carbon steels: A comparison between ferrite–pearlite and ferrite–bainite microstructures. Mater Sci Eng A. 2013;559:875–881. doi: 10.1016/j.msea.2012.09.036
  • Lou DY, He CL, Shang S, et al. Microstructure and performances of graphite scattered Cr3C2-NiCr composites prepared by laser processing. Mater Lett. 2013;93:304–307. doi: 10.1016/j.matlet.2012.11.113
  • Zhang K, Wang S, Liu W, et al. Characterization of stainless steel parts by laser metal deposition. Shaping Mat Des. 2014;55:104–119.
  • Guo P, Zou B, Huang C, et al. Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition. J Mater Process Technol. 2017;240:12–22. doi: 10.1016/j.jmatprotec.2016.09.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.