318
Views
4
CrossRef citations to date
0
Altmetric
Regular papers

Characterisation of powder metallurgy H13 steels prepared from water atomised powders

, , , , , , ORCID Icon & show all
Pages 9-18 | Received 12 Sep 2019, Accepted 05 Nov 2019, Published online: 17 Nov 2019

References

  • ASTM. Standard specification for tool steels alloy. West Conshohocken: PA; 2015. Standard No. ASTM A681-08: 2015.
  • Mellouli D, Haddar N, Köster A, et al. Hardness effect on thermal fatigue damage of hot-working tool steel. Eng Fail Anal. 2014;45:85–95. doi: 10.1016/j.engfailanal.2014.06.007
  • Pellizzari M, Molinari A, Cescato D, et al. Thermal fatigue properties of hot-work tool steels. Int J Microstruct Mater Propert. 2008;3(2–3):363–372.
  • Besler R, Bauer M, Furlan KP, et al. Effect of processing route on the microstructure and mechanical properties of hot work tool steel. Mater Res. 2017;20(6):1518–1524. doi: 10.1590/1980-5373-mr-2016-0726
  • Al-Qawabeha UF. Effect of heat treatment on the mechanical properties, Micro hardness, and impact energy of H13 alloy steel. Int J Sci Eng Res. 2017;8(2):100–104.
  • Kang M, Park G, Jung J-G, et al. The effects of annealing temperature and cooling rate on carbide precipitation behavior in H13 hot-work tool steel. J Alloys Compd. 2015;627:359–366. doi: 10.1016/j.jallcom.2014.11.189
  • Pagounis E, Talvitie M, Lindroos V. Microstructure and mechanical properties of hot work tool steel matrix composites produced by hot isostatic pressing. Powder Metall. 1997;40(1):55–61. doi: 10.1179/pom.1997.40.1.55
  • ASM International Handbook Committee. Volume 1: properties and selection: irons, steels, and high-performance alloys. Materials Park: ASM International; 1990. p. 1763–1764; 1781–1786.
  • Randelius M, Sandström R, Melander A. Fatigue strength of conventionally cast tool steels and its dependence of carbide microstructure. Steel Res Int. 2012;83(1):83–90. doi: 10.1002/srin.201100219
  • Kataoka K, Nakatsu H. 6th International Conference on Processing and Manufacturing of Advanced Materials; 2009 Aug; Berlin, Germany (DE): Materials Science Forum; 2010.
  • Fischmeister H, Riedl R, Karagöz S. Solidification of high-speed tool steels. Met Mater Trans A. 1989;20(10):2133–2148. doi: 10.1007/BF02650299
  • Boccalini M, Goldenstein H. Solidification of high speed steels. Int Mater Rev. 2001;46(2):92–115. doi: 10.1179/095066001101528411
  • Malmberg K, Nzotta M, Karasev A, et al. Optimisation of stirring conditions during vacuum degassing in order to lower inclusion content in tool steel. Ironmak Steelmak. 2013;40(3):231–237. doi: 10.1179/1743281212Y.0000000037
  • Risacher A, Chapelle P, Jardy A, et al. Electric current partition during vacuum arc remelting of steel: an experimental study. J Mater Process Technol. 2013;213(2):291–299. doi: 10.1016/j.jmatprotec.2012.09.003
  • Moon Y, Kim J, Van Tyne C. Feasibility of electro-slag cast steel for hot-working tools. Met Mater Int. 2005;11(2):169–1176. doi: 10.1007/BF03027462
  • Chuanbo L, Honghao H. Study on the thermal shock of electro-slag remelting steel4Cr5MoSiV1 (H13). Special Steel. 1995; 16(3):16.
  • Peng H, Hu L, Ngai T, et al. Effects of austenitizing temperature on microstructure and mechanical property of a 4-GPa-grade PM high-speed steel. Mater Sci Eng Mater Prop Microstruct Process. 2018;719:21–26. doi: 10.1016/j.msea.2018.02.010
  • Trabadelo V, Gimenez S, Iturriza I. Microstructural characterisation of vacuum sintered T42 powder metallurgy high-speed steel after heat treatments. Mater Sci Eng A – Struct Mater Prop Microstruct Process. 2009;499(1–2):360–367. doi: 10.1016/j.msea.2008.08.043
  • Niederhofer P, Huth S, Theisen W. Cavitation erosion and hydroabrasion resistance of cold work tool steels produced by powder metallurgy. Wear. 2015;332–333:1059–1069. doi: 10.1016/j.wear.2014.12.016
  • Weber S, Li J, Theisen W. Microstructure and wear properties of novel sintered cold work steel and related particle reinforced composite materials. Mater Sci Technol. 2010;26(12):1494–1502. doi: 10.1179/026708309X12506933872982
  • Weber S, Theisen W. Optimised sintering route for cold work tool steels. Powder Metall. 2006;49(4):355–362. doi: 10.1179/174329006X128359
  • ASM International Handbook Committee. Volume 7: powder metallurgy. Materials Park: ASM International; 1990. p. 787–790.
  • Karamchedu S, Hryha E, Nyborg L, et al. Lean atmospheres for sintering of chromium alloyed powder metallurgy steels. J Am Ceram Soc. 2015;98(11):3588–3595. doi: 10.1111/jace.13617
  • Karlsson H, Nyborg L, Berg S. Surface chemical analysis of prealloyed water atomised steel powder. Powder Metall. 2005;48(1):51–58. doi: 10.1179/0032589005X37675
  • Tunberg T, Nyborg L. Surface reactions during water atomisation and sintering of austenitic stainless steel powder. Powder Metall. 1995;38(2):120–130. doi: 10.1179/pom.1995.38.2.120
  • Kurgan N, Varol R. Mechanical properties of P/M 316L stainless steel materials. Powder Technol. 2010 Aug 12;201(3):242–247. doi: 10.1016/j.powtec.2010.03.041
  • Chasoglou D, Hryha E, Norell M, et al. Characterization of surface oxides on water-atomized steel powder by XPS/AES depth profiling and nano-scale lateral surface analysis. Appl Surf Sci. 2013;268:496–506. doi: 10.1016/j.apsusc.2012.12.155
  • Beke S, Kőrösi L, Papp S, et al. XRD and XPS analysis of laser treated vanadium oxide thin films. Appl Surf Sci. 2009;255(24):9779–9782. doi: 10.1016/j.apsusc.2009.04.069
  • Chasoglou D, Hryha E, Nyborg L. Effect of process parameters on surface oxides on chromium-alloyed steel powder during sintering. Mater Chem Phys. 2013;138(1):405–415. doi: 10.1016/j.matchemphys.2012.11.074
  • Hryha E, Nyborg L, Alzati L. Dissolution of carbon in Cr-prealloyed PM steels: effect of carbon source. Powder Metall. 2015;58(1):7–11. doi: 10.1179/0032589914Z.000000000191
  • Fedrizzi A, Pellizzari M, Zadra M. Influence of particle size ratio on densification behaviour of AISI H13/AISI M3: 2 powder mixture. Powder Technol. 2012;228:435–442. doi: 10.1016/j.powtec.2012.06.007
  • Wang W-F. Effect of MnS powder addition and sintering temperature on the corrosion resistance of sintered 303LSC stainless steels. Chem Phys. 2003;45(5):957–966.
  • Hryha E, Nyborg L. Thermogravimetry study of the effectiveness of different reducing agents during sintering of Cr-prealloyed PM steels. J Therm Anal. 2014;118(2):825–834. doi: 10.1007/s10973-014-3915-z
  • Sulowski M, Cias A. The effect of sintering atmosphere on the structure and mechanical properties of sintered Fe-Mn-Cr-Mo-C structural steels. Powder Metall Prog. 2011;11(1–2):123–131.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.