164
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Influence of porosity and hBN content on the damping capacity of metal matrix composites

ORCID Icon, , , ORCID Icon, &
Pages 116-125 | Received 17 Dec 2019, Accepted 17 Apr 2020, Published online: 04 May 2020

References

  • Rao S.S. Mechanical vibrations. 4th ed. Upper Saddle River (NJ): Pearson Prentice Hall; 2004. p. 9–11.
  • Timoshenko SP. Vibration problems in engineering. 2nd ed. D. Van Nostrand Company Inc.; 1937. p. 3–4.
  • James DW. High damping metals for engineering applications. Mater. Sci. Eng. 1968;4:1–8.
  • Ritchie IG, Pan Z-L, Sprungmann KW, et al. High damping alloys—The Metallurgist’s cure for unwanted vibrations. Can. Metall. Q. 1987;26:239–250. Available from: http://openurl.ingenta.com/content/xref?genre=article&issn=0008-4433&volume=26&issue=3&spage=239.
  • Grootenhuis P. The control of vibrations with viscoelastic materials. J. Sound Vib. 1970;11:421–433.
  • Jones D. Handbook of viscoelastic vibration damping. Hoboken (NJ): John Wiley & Sons; 2001. p. viii–xi.
  • Birchon D. Hidamets: metals to reduce noise and vibration. Eng. 1966;22:207–209.
  • Ritchie I, Pan Z. High-damping metals and alloys. Metall. Trans. A. 1991;22A:607–616.
  • Chung DDL. Review: materials for vibration damping. J. Mater. Sci. 2001;36:5733–5737. https://doi.org/10.1023/A:1012999616049.
  • Igata N, Nishiyama K, Ota K, et al. Panel discussion on the application of HDM. J. Alloys Compd. 2003;355:230–240.
  • Drits ME, Rokhlin LL, Sheredin VV, et al. Magnesium alloys with high damping capacity. Metalloved. i Termicheskaya Obrab. Met. 1970;12:48–51. https://doi.org/10.1007/BF00653392.
  • Rokhlin LL, Sheredin VV. The damping capacity of magnesium alloys. Metalloved. i Termicheskaya Obrab. Met. 1969;11:54–56. https://doi.org/10.1007/BF00652124.
  • Hedley J. The mechanism of damping in manganese-copper alloys. Met. Sci. 1968;2:129–137.
  • Birchon D, Bromley D, Healey D. Mechanism of energy dissipation in high-damping-capacity manganese-copper alloys. Met. Sci. 1968;2:41–46.
  • Ceresara S, Tiberig GA, et al. Damping characteristics of CU-ZN-Al shape memory alloys. J. Phys. IV Colloq. 1991;1:235–240.
  • Shin K, Wong CR, Whang SH. Fabrication and damping capacity of Cu-Zn-Al matrix composites processed by powder metallurgy route. Mater. Sci. Eng. A. 1993;165:35–43.
  • Golyandin S, Kustov S, Parlinska M, et al. Structural anelasticity of NiTi during two-stage martensitic transformation. J. Alloys Compd. 2000;310:312–317.
  • Cai W, Lu X, Zhao L. Damping behavior of TiNi-based shape memory alloys. Mater. Sci. Eng. A. 2005;394:78–82.
  • Blanter MS, Golovin IS, Neuhauser H, et al. Internal friction in metallic materials – a handbook. Berlin: Springer; 2007; p. 1–8, 148–155.
  • Lu H, Wang X, Zhang T, et al. Design, fabrication, and properties of high damping metal matrix composites—a review. Materials (Basel). [cited 2014 Oct 16] 2009;2:958–977. Available from: http://www.mdpi.com/1996-1944/2/3/958/.
  • Schaller R. Metal matrix composites, a smart choice for high damping materials. J. Alloys Compd. 2003;355:131–135.
  • Sueyoshi H, Tagami K, Rochman N. Damping capacity of graphite-dispersed composite steel. Mater. Trans. 2001;42:965–969.
  • Sueyoshi H, Rochman NT, Kawano S. Damping capacity and mechanical property of hexagonal boron nitride-dispersed composite steel. J. Alloys Compd. 2003;355:120–125.
  • Lian YC, Marler RT, Li JCM. Damping properties of consolidated iron and graphite powders. Acta Metall. 1995;43:631–638.
  • Arockiasamy A, Park SJ, German RM. Viscoelastic behaviour of porous sintered steels compact. Powder Metall. 2010;53:107–111.
  • Metal Powder Industries Federation. Standard 10 (Determination of the tensile properties of powder metallurgy (PM) materials). Stand. test methods Met. powders powder Metall. Prod. Metal Powder Industries Federation; 2016.
  • Metal Powder Industries Federation. Standard 40 (Determination of impact energy of unnotched powder metallurgy (PM) test specimens). Stand. test methods Met. powders powder Metall. Prod. Metal Powder Industries Federation; 2016.
  • ASTM International. ASTM b931 (Standard test method for metallographically estimating the observed case depth of ferrous powder metallurgy (PM) parts). West Conshohocken (PA): ASTM International; 2014.
  • Mahathanabodee S, Palathai T, Raadnui S, et al. Effects of hexagonal boron nitride and sintering temperature on mechanical and tribological properties of SS316L/h-BN composites. Mater. Des. 2013;46:588–597.
  • Hammes G. Aços sinterizados autolubrificantes a seco com elevada resistência mecânica associada a baixo coeficiente de atrito. Federal University of Santa Cataria - Thesis (original in portuguese); 2011.
  • Schroeder R, Klein AN, Binder C, et al. Internal lubricant as an alternative to coating steels. Met. Powder Rep. [ Internet]. 2010;65:24–31. doi:10.1016/S0026-0657(11)70043-1.
  • Gonçalves PDC, Furlan KP, Hammes G, et al. Self-lubricant sintered composites with hexagonal boron nitride and graphite mixtures as solid lubricants. WorldPM. 2014;1:1–7.
  • Chawla N, Deng X. Microstructure and mechanical behavior of porous sintered steels. Mater. Sci. Eng. A [ Internet]. 2005;390:98–112. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0921509304010111.
  • Granato A, Lücke K. Theory of mechanical damping due to dislocations. J. Appl. Phys. 1956;27:583.
  • Golovin Sa. On the damping capacity of cast irons. Phys. Met. Metallogr. [Internet]. 2012 [cited 2014 Apr 23];113:716–720. Available from: http://link.springer.com/10.1134/S0031918X12070058.
  • Lihua L, Xiuqin Z, Xianfeng L, et al. Effect of silicon on damping capacities of pure magnesium and magnesium alloys. Mater. Lett. 2007;61:231–234. https://doi.org/10.1016/j.matlet.2006.04.038.
  • Hakamada M, Watanabe H, Kuromura T, et al. Effects of pore characteristics finely-controlled by Spacer method on damping capacity of porous aluminum. Mater. Trans. 2009;50:427–429.
  • Zhang J, Gungor MN, Lavernia EJ. The effect of porosity on the microstructural damping response of 6061 aluminium alloy. J. Mater. Sci. 1993;28:1515–1524.
  • Kardashev BK, Burenkov YA, Smirnov BI, et al. Elasticity and inelasticity of ceramic samples of graphite like boron nitride. Phys. Solid State. 2001;43:1084–1088.
  • Zhang J, Perez RJ, Wong CR, et al. Effects of secondary phases on the damping behaviour of metals, alloys and metal matrix composites. Mater. Sci. Eng. 1994;13:325–389.
  • de Medeiros JP, Hammes G, Oliveira Neves G, et al. Effect of liquid phase assisted sintering on the microstructure, mechanical properties and tribological behavior of self-lubricating ferrous composites. Adv. Eng. Mater. 2019;22(3):1–10. Article ID 1900865. https://doi.org/10.1002/adem.201900865.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.