222
Views
5
CrossRef citations to date
0
Altmetric
Research articles

Thermoelectric properties of quaternary chalcogenide Cu2ZnSnS4 synthesised by mechanical alloying

ORCID Icon, , &
Pages 220-226 | Received 04 Mar 2020, Accepted 11 Jun 2020, Published online: 22 Jun 2020

References

  • Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105–114.
  • Fitriani R, Ovik B, Long D, et al. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renewable Sustainable Energy Rev. 2016;64:635–659.
  • Zhang X, Zhao L-D. Thermoelectric materials: energy conversion between heat and electricity. J Materiomics. 2015;1(2):92–105.
  • Long BD, Binh DN, Hai LM, et al. Thermoelectric materials: Fundamental, applications and challenges. Vietnam J Sci Technol. 2018;56:1–13.
  • Sharma S, Sonnathi N. Thermoelectric properties of hot pressed CZTS micro spheres synthesized by microwave method. MRS Adv. 2018;3:1–6.
  • Ge Z-H, Zhao L-D, Wu D, et al. Low-cost, abundant binary sulfides as promising thermoelectric materials. Mater Today. 2016;19(4):227–239.
  • Sun K, Yan C, Liu F, et al. Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1–xCdxS buffer layer. Adv Energy Mater. 2016;6(12):1600046.
  • Scragg JJ, Ericson T, Fontané X, et al. Rapid annealing of reactively sputtered precursors for Cu2ZnSnS4 solar cells. Prog Photovoltaics Res Appl. 2014;22(1):10–17.
  • Krishnan A, Vidyadharan D, Swaminathan S, et al. Co-electrodeposited Cu2ZnSnS4 thin films for P-N junction photovoltaics and dye sensitized solar cells. Materials Today: Proceedings, 2020.
  • Liu ML, Huang FQ, Chen LD, et al. A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q = S,Se). Appl Phys Lett. 2009;94.
  • Kosuga A, Matsuzawa M, Horie A, et al. High-temperature thermoelectric properties and thermal stability in air of copper zinc tin sulfide for the p-type leg of thermoelectric devices. Jpn J Appl Phys. 2015;54(6):061801.
  • Nagaoka A, Masuda T, Yasui S, et al. The single-crystal multinary compound Cu2ZnSnS4 as an environmentally friendly high-performance thermoelectric material. Appl Phys Express. 2018;11(5):051203.
  • Liu M-L, Chen I-W, et al. Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Adv Mater. 2009;21(37):3808–3812.
  • Dhakal T, Peng C-Y, Tobias R, et al. Characterization of a CZTS thin film solar cell Grown by sputtering method. Sol Energy. 2013;100:23–30.
  • Shi C, Shi G, Chen Z, et al. Deposition of Cu2ZnSnS4 thin films by vacuum thermal evaporation from single quaternary compound source. Mater Lett. 2012;73:89–91.
  • Guo BL, Chen YH, Liu XJ, et al. Optical and electrical properties study of sol-gel derived Cu2ZnSnS4 thin films for solar cells. AIP Adv. 2014;4(9):097115.
  • Aono M, Yoshitake K, Miyazaki H. XPS depth profile study of CZTS thin films prepared by spray pyrolysis. Phys Status Solidi C. 2013;10(7–8):1058–1061.
  • Bui L, Nguyen K, Duong B, et al. Synthesis of Cu2ZnSnS4 by mechanical alloying method for thermoelectric application. Acta Metallurgica Slovaca. 2019;25:174.
  • Zhou Y, Xi S, Sun C, et al. Facile synthesis of Cu2ZnSnS4 powders by mechanical alloying and annealing. Mater Lett. 2016;169:176–179.
  • Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46(1):1–184.
  • Matsushita H, Maeda T, Katsui A, et al. Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu–III–IV–VI4 and Cu2–II–IV–VI4 (II = Zn,Cd; III = Ga,In; IV = Ge,Sn; VI = Se). J Cryst Growth. 2000;208(1):416–422.
  • Babu GS, Kumar YBK, Bhaskar PU, et al. Effect of post-deposition annealing on the growth of Cu2ZnSnSe4 thin films for a solar cell absorber layer. Semicond Sci Technol. 2008;23(8):085023.
  • Larson P, Mahanti SD, Kanatzidis MG. Electronic structure and transport of Bi2Te3 and BaBiTe3. Physical Review B. 2000;61(12):8162–8171.
  • Pecheur P, Toussaint G. Electronic structure and bonding in bismuth telluride. Phys Lett A. 1989;135(3):223–226.
  • Sofo JO, Mahan GD. Electronic structure of CoSb3: a narrow-band-gap semiconductor. Phys Rev B. 1998;58(23):15620–15623.
  • Keffer C, Hayes TM, Bienenstock A. Debye-Waller factors and the PbTe band-gap temperature dependence. Phys Rev B. 1970;2(6):1966–1976.
  • Su T, Jia X, Ma H, et al. Thermoelectric properties of nonstoichiometric PbTe prepared by HPHT. J Alloys Compd. 2009;468(1):410–413.
  • Raju C, Falmbigl M, Rogl P, et al. Thermoelectric properties of chalcogenide based Cu2+xZnSn1−xSe4. AIP Adv. 2013;3(3):032106.
  • Pei Y, Wang H, Snyder GJ. Band engineering of thermoelectric materials. Adv Mater. 2012;24(46):6125–6135.
  • Yang H, Jauregui LA, Zhang G, et al. Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. Nano Lett. 2012;12(2):540–545.
  • Dresselhaus MS, Chen G, Tang MY, et al. New directions for low-dimensional thermoelectric materials. Adv Mater. 2007;19(8):1043–1053.
  • Nolas GS, Sharp J, Thermoelectrics HG. Thermoelectrics: basic principles and new materials developments. Berlin/Heidelberg: Springer-Verlag; 2001.
  • Shavel A, Cadavid D, Ibáñez M, et al. Continuous production of Cu2ZnSnS4 nanocrystals in a flow reactor. J Am Chem Soc. 2012;134(3):1438–1441.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.