429
Views
7
CrossRef citations to date
0
Altmetric
Review

The synergy between powder metallurgy processes and welding of metallic alloy: a review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 254-267 | Received 27 Oct 2019, Accepted 05 Aug 2020, Published online: 19 Aug 2020

References

  • Upadhyaya GS. Powder metallurgy technology. Cambridge Int Science Publishing; 1997.
  • Han Y, Zou D, Chen Z, et al. Investigation on hot deformation behavior of 00Cr23Ni4N duplex stainless steel under medium–high strain rates. Mater Charact. 2011;62:198–203. doi: 10.1016/j.matchar.2010.11.013
  • Dutkiewicz JM, Maziarz W, Czeppe T, et al. Powder metallurgy technology of NiTi shape memory alloy. Eur Phys J Special Topics. 2008;158:59–65. doi: 10.1140/epjst/e2008-00654-6
  • Selcuk C, Bond S, Woollin P. Joining processes for powder metallurgy parts: a review. Powder Metall. 2010;53:7–11. doi: 10.1179/003258910X12680617015249
  • Krishnaa MV, Kandavel T, Reddy KP, et al. Weldability study on atomet 4601+ TIC alloy steels. Int J Pure Appl Math. 2017;117(16):465–473.
  • Jayabharath K, Ashfaq M, Venugopal P, et al. Investigations on the continuous drive friction welding of sintered powder metallurgical (P/M) steel and wrought copper parts. Mater Sci Eng A. 2007;454:114–123. doi: 10.1016/j.msea.2006.11.026
  • Joseph J, Muthukumaran S, Pandey K. Weldability characteristics of sintered hot-forged AISI 4135 steel produced through P/M route by using pulsed current gas tungsten arc welding. High Temp Mater Process. 2016;35:9–19. doi: 10.1515/htmp-2014-0097
  • Datta P, Upadhyaya G. Sintered duplex stainless steels from premixes of 316L and 434L powders. Mater Chem Phys. 2001;67:234–242. doi: 10.1016/S0254-0584(00)00477-6
  • Martín Pedrosa F, García Cabezón C, Blanco Val Y, et al. Tribocorrosion behaviour of powder metallurgy duplex stainless steels sintered innitrogen, (2013).
  • Morakotjinda M, Kuljittipipat N, Poolthong N, et al. Sintered materials prepared from stainless steel series 300 and 400 powders. J Metals Mater Miner. 2017;18:69–74.
  • Layus P, Kah P, Khlusova E, et al. Study of the sensitivity of high-strength cold-resistant shipbuilding steels to thermal cycle of arc welding. Int J Mech Mater Eng. 2018;13:3. doi: 10.1186/s40712-018-0090-1
  • Bahador A, Hamzah E, Kondoh K, et al. Defocusing effects of laser beam on the weldability of powder metallurgy Ti-based shape memory alloys. Proc Eng. 2017;184:205–213. doi: 10.1016/j.proeng.2017.04.087
  • Hamill JA, Manley FR, Nelson DE. Fusion welding P/M components for automotive applications, in, SAE Technical Paper, 1993.
  • Selcuk C. Joining processes for powder metallurgy parts. In: Chang Isaac, Yuyuan Zhao, editors. Advances in powder metallurgyElsevier; 2013. p. 380–398.
  • Orban R. New research directions in powder metallurgy. Rom Rep Phys. 2004;56:505–516.
  • Salak A. Ferrous powder metallurgy. Cambridge: Cambridge International Science Publishing; 1995. 227-237.
  • R.M. German, Powder metallurgy of iron and steel, John! Wiley & Sons, Inc, 605 Third Ave, New York, NY 10016, USA, 1998. 496 (1998).
  • Kaysser WA, Petzow G. Advanced materials by powder metallurgy. Angew Chem. 1988;100:1021–1025. doi: 10.1002/ange.19881000750
  • German RM. Powder metallurgy and particulate materials processing: the processes, materials, products, properties, and applications. Metal Powder Industries Federation Princeton. 2005.
  • Jenkins I, Wood JV. Powder metallurgy: an overview. London: Woodhead Publishing Ltd; 1991.
  • Lenel FV. Powder metallurgy: principles and applications. Princeton: Metal Powder Industry; 1980.
  • Thümmler F., Oberacker R. Introduction to PM, the institute of materials. London: Institute of Materials; 1993. p. 255–258.
  • Schatt W, Wieters K-P. Powder metallurgy: processing and materials, European powder metallurgy association, 1997.
  • Yi J, Gao Y, Lee P, et al. Scatter in fatigue life due to effects of porosity in cast A356-T6 aluminum-silicon alloys. Metall Mater Transact A. 2003;34:1879. doi: 10.1007/s11661-003-0153-6
  • James WB. Powder forging. Rev Part Mater. 1994;2:173–213.
  • Bose A, Eisen WB. Hot consolidation of powders & particulates. Princeton: Metal Powder Industries Federation; 2003.
  • Abdel-Rahman M, El-Sheikh M. Workability in forging of powder metallurgy compacts. J Mater Process Technol. 1995;54:97–102. doi: 10.1016/0924-0136(95)01926-X
  • Altan T, Ngaile G, Shen G. Cold and hot forging: fundamentals and applications. Ohio: ASM International; 2004.
  • Sweet GA, Wells MA, Taylor A, et al. Thermal mechanical processing of press and sinter Al-Cu-Mg-Sn-(AlN) metal matrix composite materials. Metals (Basel). 2018;8:480. doi: 10.3390/met8070480
  • Hammill Jr J. P/M joining processes, materials and techniques. Int J Powder Metall (USA). 1991;27:363–372.
  • Balasubramanian T, Balasubramanian V, Muthumanikkam M. Fatigue performance of gas tungsten arc, electron beam, and laser beam welded Ti-6Al-4V alloy joints. J Mater Eng Perform. 2011;20:1620–1630. doi: 10.1007/s11665-010-9822-y
  • Gao X-L, Zhang L-J, Liu J, et al. A comparative study of pulsed Nd: YAG laser welding and TIG welding of thin Ti6Al4 V titanium alloy plate. Mater Sci Eng A. 2013;559:14–21. doi: 10.1016/j.msea.2012.06.016
  • Yunlian Q, Ju D, Quan H, et al. Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet. Mater Sci Eng A. 2000;280:177–181. doi: 10.1016/S0921-5093(99)00662-0
  • Zhang L, Gao X, Sun M, et al. Weld outline comparison between various pulsed Nd: YAG laser welding and pulsed Nd: YAG laser–TIG arc welding. Int J Adv Manuf Technol. 2014;75:153–160. doi: 10.1007/s00170-014-6122-y
  • Zhang J, Xue Y, Gong S. Residual welding stresses in laser beam and tungsten inert gas weldments of titanium alloy. Sci Technol Weld Joining. 2005;10:643–646. doi: 10.1179/174329305X48374
  • Auwal S, Ramesh S, Yusof F, et al. A review on laser beam welding of copper alloys. Int J Adv Manuf Technol. 2018;96:475–490. doi: 10.1007/s00170-017-1566-5
  • Kou S. Welding, glazing, and heat treating – a dimensional analysis of heat flow. Metall Trans A. 1982;13:363–371. doi: 10.1007/BF02643345
  • Katayama S. Introduction: fundamentals of laser welding. In: Katayama S, editor. Handbook of laser welding technologies. Oxford: Elsevier; 2013. p. 3–16.
  • Czerwinski F. In: F Czerwinski, editor. Welding and joining of magnesium alloys, magnesium alloys – design, processing and properties. Bolton, ON: Intech; 2011. p. 469–491.
  • Joshi A, Wildermuth J, Stein D. Effect of impurity elements on the properties of Fe P/M compacts. Int J Powder Metall. 1975;11:137–142.
  • Kou S. Welding metallurgy. second edition. Hoboken. 2003: 1–29.
  • Xie M-X, Li Y-X, Shang X-T, et al. Microstructure and mechanical properties of a fiber welded Socket-joint made of powder metallurgy molybdenum alloy. Metals (Basel). 2019;9:640. doi: 10.3390/met9060640
  • Chawla N, Deng X. Microstructure and mechanical behavior of porous sintered steels. Mater Sci Eng A. 2005;390:98–112. doi: 10.1016/j.msea.2004.08.046
  • Sudhakar K, Sampathkumaran P, Dwarakadasa E. Dry sliding wear in high density Fe–2% Ni based P/M alloys. Wear. 2000;242:207–212. doi: 10.1016/S0043-1648(00)00422-1
  • Hamill Jr J. What are the joining processes, materials and techniques for powder metal parts. Welding J (Miami, United States). 1993;72:37–45.
  • Kurt A, Ates H, Durgutlu A, et al. Exploring the weldability of powder metal parts. Weld J. 2004;83:34–37.
  • Kumar TS, Balasubramanian V, Sanavullah M. Influences of pulsed current tungsten inert gas welding parameters on the tensile properties of AA 6061 aluminium alloy. Mater Des. 2007;28:2080–2092. doi: 10.1016/j.matdes.2006.05.027
  • Correa EO. Weldability of iron based powder metal alloys using pulsed GTAW process. In: Wladislav Sudnik, editor. Arc welding. Rijeka: InTech; 2011. p. 109–126.
  • Klar E, Samal PK. Powder metallurgy stainless steels: processing, microstructures, and properties. ASM International; 2007.
  • Garver F, Urffer J. Welding P/M ferritic stainless steel hego fittings. Adv Powder Metall Part Mater. 1997;1:9–37.
  • Kurt A, Uygur I, Ates H. Effect of porosity content on the weldability of powder metal parts produced by friction stir welding. In: Duk Yong Yoon, Suk-Joong L. Kang, Kwang Yong Eun, et al., editors. Materials science forumTrans Tech Publications; 2007. p. 789–792.
  • Verma J, Taiwade RV. Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments – a review. J Manuf Process. 2017;25:134–152. doi: 10.1016/j.jmapro.2016.11.003
  • Elrefaey A, Anders K, Kilian H, et al. Friction stir welding of extruded powder metallurgy Al alloy. Weld J. 2014;93:451S–457S.
  • Metzger G. Gas tungsten arc welding of a powder metallurgy Aluminum alloy. Weld Res Suppl. 1992: 297-s–304-s.
  • Yu X, Mazumder B, Miller M, et al. Stability of Y–Ti–O precipitates in friction stir welded nanostructured ferritic alloys. Sci Technol Weld Joining. 2015;20:236–241. doi: 10.1179/1362171815Y.0000000002
  • Gourdet S, Montheillet F. A model of continuous dynamic recrystallization. Acta Mater. 2003;51:2685–2699. doi: 10.1016/S1359-6454(03)00078-8
  • Badalassi V, Ceniceros H, Banerjee S. Computation of multiphase systems with phase field models. J Comput Phys. 2003;190:371–397. doi: 10.1016/S0021-9991(03)00280-8
  • Chen C-L, Tatlock G, Jones A. Microstructural evolution in friction stir welding of nanostructured ODS alloys. J Alloys Compd. 2010;504:S460–S466. doi: 10.1016/j.jallcom.2010.02.192
  • Correa E, Costa S, Santos J. Studies on weldability of iron-based powder metal alloys using pulsed gas tungsten arc welding process. J Mater Process Technol. 2009;209:3937–3942. doi: 10.1016/j.jmatprotec.2008.09.008
  • Chandramouli R, Kandavel T, Karthikeyan P. Experimental investigations on welding characteristics of sinter-forged pre-alloy Atomet 4601 steel. Int J Adv Manuf Technol. 2017;88:1065–1074. doi: 10.1007/s00170-016-8825-8
  • Chandramouli R, Kandavel T, Karthikeyan P. Experimental investigations on welding behaviour of sintered and forged Fe–0.3% C–3% Mo low alloy steel. Mater Des. 2014;53:645–650. doi: 10.1016/j.matdes.2013.07.064
  • Mehta Y, Trivedi S, Chandra K, et al. Studies on weldability of powder-processed Fe-0.35 P-0.15 C alloy using gas tungsten arc welding process. J Miner Mater Charact Eng. 2010;9:211.
  • Qinglei J, Yajiang L, Puchkov U, et al. Microstructure characteristics in TIG welded joint of Mo–Cu composite and 18-8 stainless steel. Int J Refract Met Hard Mater. 2010;28:429–433. doi: 10.1016/j.ijrmhm.2010.01.004
  • Zhu Q, Lei Y-C, Chen X-Z, et al. Microstructure and mechanical properties in TIG welding of CLAM steel. Fusion Eng Des. 2011;86:407–411. doi: 10.1016/j.fusengdes.2011.03.070
  • Suresh M, Vamsi Krishna B, Venugopal P, et al. Effect of pulse frequency in gas tungsten arc welding of powder metallurgical preforms. Sci Technol Weld Joining. 2004;9:362–368. doi: 10.1179/136217104225012238
  • Correa E, Costa S, Santos J. Weldability of iron-based powder metal materials using pulsed plasma arc welding process. J Mater Process Technol. 2008;198:323–329. doi: 10.1016/j.jmatprotec.2007.07.007
  • das Neves MDM, Barbosa LP, da Silva LCE, et al. TIG welding of sintered AISI 316 L stainless steel, in: materials science forum. Trans Tech Publ. 2010;660:454–459.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.