2,340
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Fundamental principles of spark plasma sintering of metals: part II – about the existence or non-existence of the ‘spark plasma effect’

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 312-328 | Received 29 Nov 2019, Accepted 22 Sep 2020, Published online: 21 Oct 2020

References

  • Castro R, van Benthem K. Sintering: mechanisms of convention nanodensification and field assisted processes. Berlin Heidelberg: Springer; 2013.
  • Guillon O, Gonzalez-Julian J, Dargatz B, et al. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater. 2014;16(7):830–849.
  • Orrù R, Licheri R, Locci AM, Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng: R: Rep. 2009;63(4-6):127–287.
  • Saunders T, Grasso S, Reece MJ. Plasma formation during electric discharge (50 V) through conductive powder compacts. J Eur Ceram Soc. 2014;35(3):871–877.
  • Hulbert DM, Anders A, Dudina DV, et al. The absence of plasma in spark plasma sintering. J Appl Phys. 2008;104(3):33305–33307.
  • Hulbert DM, Anders A, Andersson J, et al. A discussion on the absence of plasma in spark plasma sintering. Scr Mater. 2009;60(10):835–838.
  • Yanagisawa O, Kuramoto H, Matsugi K, et al. Observation of particle behavior in copper powder compact during pulsed electric discharge. Mater Sci Eng A. 2003;350(1-2):184–189.
  • Suárez M, Fernández A, Menéndez JL, et al. Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. In Burcu Ertuğ, editor, Sintering applications, London: IntechOpen; 2013. p. 319–342.
  • Ragulya AV. Fundamentals of spark plasma sintering. Ref Module Mater Sci Mater Eng. 2016: 1–5.
  • Trapp J, Kieback B. Fundamental principles of spark plasma sintering of metals: part i– joule heating controlled by the evolution of powder resistivity and local current densities. Powder Metall. 2019;62(5):297–306.
  • Holm R, Holm E. Electric contacts: theory and application. Berlin Heidelberg: Springer; 1967.
  • Slade PG. Electrical contacts: principles and applications. Boca Raton:Taylor & Francis Group; 2014.
  • Semenov AS, Trapp J, Nöthe M, et al. Experimental and numerical analysis of the initial stage of field-assisted sintering of metals. J Mater Sci. 2017;52:1486–1500.
  • McWilliams B, Zavaliangos A. Multi-phenomena simulation of electric field assisted sintering. J Mater Sci. 2008;43(14):5031–5035.
  • Greenwood J, Harris J. Electrical conduction in solids. III. The contact of iron surfaces. Proc R Soc A: Math Phys Eng Sci. 1960;257(1288):83–97.
  • Herger P. Elektrische Leitfähigkeit von kugelförmigem Kupferpulver unter Druck. Arch Elektrotech. 1977;59(5):275–277.
  • Kohler M, Zielasek G. Der zeitliche Temperaturverlauf in elektrischen Kontakten. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft. 1952;4:117–126.
  • Carslaw HS, Jaeger JC. Conduction of heat in solids. Oxford:Oxford University Press; 1959.
  • Trapp J, Kieback B. Temperature distribution in metallic powder particles during initial stage of field-activated sintering. J Am Ceram Soc. 2015;98(11):3547–3552.
  • Semenov AS, Trapp J, Nöthe M, et al. Thermo-electro-mechanical modeling, simulation and experiments of field-assisted sintering. J Mater Sci. 2019;54(15):10764–10783.
  • Simmons JG. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys. 1963;34(6):1793–1803.
  • Zinoviev VE. Thermo-physical properties of metals at high temperatures. Moscow: Metalurgia; 1989.
  • Chu TK, Ho CY. Electrical resistivity and thermal conductivity of nine selected AISI stainless steels. Technical report, Defense technical information center, 1977.
  • Song X, Liu X, Zhang J. Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering. J Am Cera Soc. 2006;89(2):494–500.
  • Holland TB, Anselmi-Tamburini U, Quach DV, et al. Effects of local Joule heating during the field assisted sintering of ionic ceramics. J Eur Ceram Soc. 2012;32(14):3667–3674.
  • Kuz'mov AV, Olevsky EA, Aleksandrova EV. Effect of micrononuniform heating of powder in field-Assisted sintering on shrinkage kinetics. Powder Metallurgy Metal Ceram. 2013;51(11):657–665.
  • Zhao J, Wang GX, Dong Y, et al. Multiscale modeling of localized resistive heating in nanocrystalline metals subjected to electropulsing. J Appl Phys. 2017;122(8):085101.
  • Bulat LP, Nefedova IA, Pshenay-Severin DA. Targeted Use of SPS Method for Improvement of Thermoelectrics. In Pietro Vincenzini Advances in Science and Technology: 6th Forum on New Materials - Part A, Vol. 93, Trans Tech Publ. Baech: Switzerland; p. 168–173. 2014.
  • Mani MK, Viola G, Hall JP, et a. Observation of curie transition during spark plasma sintering of ferromagnetic materials. J Magn Magn Mater. 2015;382:202–205.
  • Collard C, Trzaska Z, Durand L, et al. Theoretical and experimental investigations of local overheating at particle contacts in spark plasma sintering. Powder Technol. 2017;321:458–470.
  • Trzaska Z, Collard C, Durand L, et al. Spark plasma sintering microscopic mechanisms of metallic systems: experiments and simulations. J Am Cera Soc. 2018;102:1–8.
  • Rogachev AS, Vadchenko SG, Kudryashov VA, et al. Direct observation of processes at particle-to-particle contacts during electric pulse consolidation of a titanium powder. Doklady Physical Chemistry. 2019;488(2):151–153.
  • Schütte P, Garcia J, Theisen W. Electro discharge sintering as a process for rapid compaction in pm-technology. pages 91–99. Proceeding Nr. 3, EPMA Euro PM2009, Copenhagen, Denmark (12-14 October 2009), 2009.
  • Leich L, Röttger A, Theisen W, et al. Densification of nanocrystalline ndfeb magnets processed by electro-discharge sintering – microstructure, magnetic, and mechanical properties. J Magn Magn Mater. 2018;460:454–460.
  • Fais A. A faster FAST: electro-sinter-forging. Metal Powder Rep. 2018;73:80–86.
  • Lagos MA, Agote I, Schubert T, et al. Development of electric resistance sintering process for the fabrication of hard metals: processing, microstructure and mechanical properties. Int J Refractory Metals Hard Mater. 2017;66:88–94.
  • Manière C, Lee G, Olevsky EA. All-materials-inclusive flash spark plasma sintering. Sci Rep. 2017;7:1–8.
  • Huntington HB. Electromigration in metals. Diffusion in solids: recent developments, 303–352, 1975.
  • Adda Y, Philibert J. La diffusion dans les solides. Paris: Presses Universitaires De France; 1966.
  • Wirtz K. Zur kinetischen Theorie der Thermodiffusion im Kristallgitter. Phy Z. 1943;44(11):221–231.
  • Wever H. Thermodiffusion in binären metallischen Mischphasen. Z Naturforsch A. 1963;18(11):1215–1224.
  • Fiks VB. The thermal-diffusion mechanism in liquids. Soviet Phys -- Solid State. 1961;3(3):994–997.
  • Gillan MJ. Diffusion in a Temperature Gradient. In Mass Transport in Solids, Boston, MA:Springer US; 1983, p. 227–250.
  • Schatt W. Sintervorgänge / Grundlagen. Düsseldorf: VDI Verlag; 1992.
  • Geguzin JE. Physik des Sinterns. Lepzig: Deutscher Verlag für Grundstoffindustrie; 1973.
  • Johnson DL, Clarke TM. Grain boundary and volume diffusion in the sintering of silver. Acta Metallurgica. 1964;12(10):1173–1179.
  • Coble RL. Diffusion models for hot pressing with surface energy and pressure effects as driving forces. J Appl Phys. 1970;41(12):4798–4807.
  • Lányi P. Strukturelle Aktivität und Verdichtungskinetik im Frühstadium des Sinterprozesses. PhD thesis, Akademie der Wissenschaften der DDR, 1980.
  • Staab T. Positronenlebensdauerspektroskopieuntersuchungen zum Sinterprozess in Metallpulverpresslingen: der Einfluss von Gefüge und Mikrostruktur auf den Materialtransport. PhD thesis, Martin-Luther-Universität Halle-Wittenberg, 1997.
  • Kohlrausch F. Über den stationären Temperaturzustand eines elektrisch geheizten Leiters. Ann Phys. 1900;306(1):132–158.
  • Brandes EA, Brook GB. Smithells metals reference book. Oxford, Burlington: Elsevier Butterworth-Heinemann; 1992.
  • Deutsche Edelstahlwerke GmbH. 1.4034 -- Nichtrostender martensitischer Chrom-Stahl, 2007 .
  • Deutsche Edelstahlwerke GmbH. 1.4301 -- Nichtrostender austenitischer Chrom-Nickel-Stahl, Revisions-Nr. 1.4301/1, 2008 .
  • Frost HJ, Ashby MF. Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Oxford [Oxfordshire], New York: Pergamon Press; 1982.
  • Young RM, McPherson R. Temperature-gradient-driven diffusion in rapid-Rate sintering. J Am Ceramic Soc. 1989;72(6):1080–1081.
  • Kwok T. Effect of metal line geometry on electromigration lifetime in al-cu submicron interconnects. In 26th Annual Proceedings Reliability Physics Symposium, p 185–191, 1988.
  • Fridline DR, Bower AF. Influence of anisotropic surface diffusivity on electromigration induced void migration and evolution. J Appl Phys. 1999;85(6):3168–3174.
  • Orchard HT, Greer AL. Electromigration effects on compound growth at interfaces. Appl Phys Lett. 2005;86:231906.
  • Pierce DG, Brusius PG. Electromigration: A review. Microelectron Reliab. 1997;37:1053–1072.
  • Ceric H, Selberherr S. Electromigration in submicron interconnect features of integrated circuits. Mater Sci Eng R: Rep. 2011;71(5-6):53–86.
  • Runde M, Kongsjorden H, Kulsetås J, et al. Detection of a-spots in aluminum contacts. IEEE Trans Compon, Hybrids, Manuf Technol. 1986;9(1):77–85.
  • Liu WC, Chen SW, Chen CM. The Al/Ni interfacial reactions under the influence of electric current. J Electronic Mater. 1998;27(1):L6–L9.
  • Bertolino N, Garay J, Anselmi-Tamburini U, et al. Electromigration effects in Al-Au multilayers. Scr Mater. 2001;44:737–742.
  • Garay JE, Anselmi-Tamburini U, Munir ZA. Enhanced growth of intermetallic phases in the Ni-Ti system by current effects. Acta Mater. 2003;51(15):4487–4495.
  • Friedman JR, Garay JE, Anselmi-Tamburini U, et al. Modified interfacial reactions in Ag-Zn multilayers under the influence of high DC currents. Intermetallics. 2004;12(6):589–597.
  • Kondo T, Yasuhara M, Kuramoto T, et al. Effect of pulsed DC current on atomic diffusion of Nb-C diffusion couple. Mater Sci. 2008;43(19):6400–6405.
  • Kondo T, Kuramoto T, Kodera Y, et al. Enhanced growth of Mo2C formed in Mo-C diffusion couple by pulsed DC current. J Japan Soc Powder Powder Metall. 2008;55(9):643–650.
  • Kondo T, Kuramoto T, Kodera Y, et al. Influence of pulsed DC current and electric field on growth of carbide ceramics during spark plasma sintering. J Ceramic Soc Japan. 2008;116(1359):1187–1192.
  • Garay JE, Glade SC, Anselmi-Tamburini U, et al. Electric current enhanced defect mobility in NiTi intermetallics. Appl Phys Lett. 2004;85:573.
  • Asoka-Kumar P, OBrien K, Lynn KG, et al. Detection of current-induced vacancies in thin aluminum-copper lines using positrons. Appl Phys Lett. 1996;68(3):406–408.
  • Skorokhod VV. Investigation of densification kinetics during sintering. Poroshkovaya Metallurgiya. 1961;3:31.
  • Trzaska Z, Monchoux JP. Electromigration experiments by spark plasma sintering in the silver-zinc system. J Alloys Compd. 2015;635:142–149.
  • Zhao J, Garay JE, Anselmi-Tamburini U, et al. Directional electromigration-enhanced interdiffususion in the Cu – Ni system. J Appl Phys. 2007;102: 114902.
  • Rudinsky S, Brochu M. Interdiffusion between copper and nickel powders and sintering map development during spark plasma sintering. Scr Mater. 2015;100:74–77.
  • Olevsky EA, Froyen L. Constitutive modeling of spark-plasma sintering of conductive materials. Scr Mater. 2006;55(12):1175–1178.
  • Olevsky EA, Kandukuri S, Froyen L. Analysis of mechanisms of spark-Plasma sintering. Key Eng. Mater.. 2008;368–372:1580–1584.
  • Montes JM, Cuevas FG, Cintas J, et al. Electrical conductivity of metal powders under pressure. Appl Phys A: Mater Sci Process. 2011;105(4):935–947.
  • Li ZH, Dong Y, Li S, et al. Electromigration-induced coble creep in polycrystalline materials. Appl Phys Lett. 2007;91:191–902.
  • Runde M. Mass transport in stationary contact points. Components, Hybrids, Manufact Technol, IEEE Trans on. 1987;10(1):89–99.
  • Oriani RA. Thermomigration in solid metals. J Phys Chem Solids. 1969;30:339–351.
  • Wever H. Elektro- und Thermotransport in Metallen. Leipzig: Barth; 1973.
  • Johnson DL. Comment on: Temperature-gradient-driven diffusion in rapid-rate sintering. J Am Ceramic Soc. 1990;73(8):2576–2578.
  • Olevsky EA, Froyen L. Impact of thermal diffusion on densification during SPS. J Am Ceramic Soc. 2009;92:S122–S132.
  • Chen W, Anselmi-Tamburini U, Garay JE, et al. Fundamental investigations on the spark plasma sintering/synthesis process: I. Effect of dc pulsing on reactivity. Mater Sci Eng A. 2005;394:132–138.
  • Xie G, Ohashi O, Chiba K, et al. Frequency effect on pulse electric current sintering process of pure aluminum powder. Mater Sci Eng A. 2003;359(1-2):384–390.
  • Anselmi-Tamburini U, Gennari S, Garay JE, et al. Fundamental investigations on the spark plasma sintering/synthesis process II. Modeling of current and temperature distributions. Mater Sci Eng A. 2005;394:139–148.