456
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effect of multiple oxides on the mechanical properties of CoCrFeMnNi high-entropy alloy matrix composites

, , , , &
Pages 166-172 | Received 03 Dec 2020, Accepted 16 Feb 2021, Published online: 03 Mar 2021

References

  • Yeh J-W, Chen S-K, Lin S-J, et al. Nanostructured high-entropy alloys with multiple principal elements; novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303.
  • Li BS, Wang YP, Ren MX, et al. Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy. Mater Sci Eng A. 2008;498(1–2):482–486.
  • Wang XF, Zhang Y, Qiao Y, et al. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics. 2007;15(3):357–362.
  • Gludovatz B, George EP, Ritchie RO. Processing, microstructure and mechanical properties of the CrMnFeCoNi high-entropy alloy. Jom. 2015;67(10):2262–2270.
  • Nam S, Kim MJ, Hwang JY, et al. Strengthening of Al0.15CoCrCuFeNiTi –C (x = 0, 1, 2) high-entropy alloys by grain refinement and using nanoscale carbides via powder metallurgical route. J Alloys Compd. 2018;762:29–37.
  • Ji W, Wang W, Wang H, et al. Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics. 2015;56:24–27.
  • Torralba JM, Alvaredo P, García-Junceda A. High-entropy alloys fabricated via powder metallurgy. A critical review. Powder Metall. 2019;62(2):84–114.
  • Wang C, Ji W, Fu Z. Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Adv Powder Technol. 2014;25(4):1334–1338.
  • Gwalani B, Pohan RM, Waseem OA, et al. Strengthening of Al0.3CoCrFeMnNi-based ODS high entropy alloys with incremental changes in the concentration of Y2O3. Scr Mater. 2019;162:477–481.
  • Moravcik I, Gouvea L, Hornik V, et al. Synergic strengthening by oxide and coherent precipitate dispersions in high-entropy alloy prepared by powder metallurgy. Scr Mater. 2018;157:24–29.
  • Rogal Ł, Kalita D, Tarasek A, et al. Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy. J Alloys Compd. 2017;708:344–352.
  • Yim D, Sathiyamoorthi P, Hong S-J, et al. Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering. J Alloys Compd. 2019;781:389–396.
  • Li B, Qian B, Xu Y, et al. Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12 wt% TiN particle reinforcements via selective laser melting assisted additive manufacturing. Mater Lett. 2019;252:88–91.
  • Guo Y, Shang X, Liu Q. Microstructure and properties of in-situ TiN reinforced laser cladding CoCr2FeNiTi high-entropy alloy composite coatings. Surf Coat Technol. 2018;344:353–358.
  • Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013;61(15):5743–5755.
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375-377:213–218.
  • Stepanov ND, Shaysultanov DG, Salishchev GA, et al. Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys. J Alloys Compd. 2015;628:170–185.
  • He JY, Liu WH, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014;62:105–113.
  • Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 2015;96:258–268.
  • Mujahid M, Martin JW. The effect of oxide particle coherency on Zener pinning in ODS superalloys. J Mater Sci Lett. 1994;13:153–155.
  • Ren Q, Zhang L, Yang W. Pinning effect of oxide particles on grain boundaries of a low aluminum non-oriented electrical steel. Steel Res Int. 2019;91(1):1900303.
  • Parteli EJR, Schmidt J, Blümel C, et al. Attractive particle interaction forces and packing density of fine glass powders. Sci Rep. 2014;4(1).
  • Choi H, Jeon J, Woo S, et al. Influence of size distribution and particle interaction on the packing behavior of 316L stainless steel powder. Korean J Metals Mater. 2016;54(5):322–331.
  • Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184.
  • Shahmir H, He J, Lu Z, et al. Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater Sci Eng A. 2016;676:294–303.
  • Park N, Lee B-J, Tsuji N. The phase stability of equiatomic CoCrFeMnNi high-entropy alloy: comparison between experiment and calculation results. J Alloys Compd. 2017;719:189–193.
  • Zhang X, Wang H, Kassem M, et al. Preparation of bulk ultrafine-grained and nanostructured Zn, Al and their alloys by in situ co. Scr Mater. 2002;46:661–665.
  • Wu Z, Liang Y, Fu E, et al. Effect of ball milling parameters on the refinement of tungsten powder. Metals (Basel). 2018;8(4):281.
  • Kurlov AS, Gusev AI. Model for milling of powders. Tech Phys. 2011;56(7):975–980.
  • Eckert J, Holzer JC, Krill CE, et al. Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attriti. J Mater Res. 1992;7(7):1751–1761.
  • Deng Y, Tasan CC, Pradeep KG, et al. Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 2015;94:124–133.
  • Salishchev GA, Tikhonovsky MA, Shaysultanov DG, et al. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J Alloys Compd. 2014;591:11–21.
  • Liu WH, He JY, Huang HL, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics. 2015;60:1–8.
  • Liu L, Zhu JB, Li L, et al. Microstructure and tensile properties of FeMnNiCuCoSnx high entropy alloys. Mater Des. 2013;44:223–227.
  • Liu X, Yin H, Microstructure XY. Mechanical and tribological properties of oxide dispersion strengthened high-entropy alloys. Materials (Basel). 2017;10(11):1312.
  • Yao MJ, Pradeep KG, Tasan CC, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr Mater. 2014;72–73:5–8.
  • Hadraba H, Chlup Z, Dlouhy A, et al. Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy. Mater Sci Eng A. 2017;689:252–256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.