258
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Microstructure and mechanical properties of high carbon M2 powder metallurgy high-speed steel prepared by the carbide addition

ORCID Icon, , , , , & show all
Pages 403-412 | Received 04 Nov 2021, Accepted 04 Jan 2022, Published online: 19 Jan 2022

References

  • Chaus AS, Bračík M, Sahul M, et al. Microstructure and properties of M2 high-speed steel cast by the gravity and vacuum investment casting. Vacuum. 2019;162:183–198. doi:10.1016/j.vacuum.2019.01.041.
  • Peng H, Hu L, Ngai T, et al. Effects of austenitizing temperature on microstructure and mechanical property of a 4-GPa-grade PM high-speed steel. Mater Sci Eng A. 2018;719:21–26. doi:10.1016/j.msea.2018.02.010.
  • Giménez S, Zubizarreta C, Trabadelo V, et al. Sintering behaviour and microstructure development of T42 powder metallurgy high speed steel under different processing conditions. Mater Sci Eng A. 2008;480:130–137. doi:10.1016/j.msea.2007.06.082.
  • Palma RH, Martínez V, Urcola JJ. Sintering behaviour of T42 water atomised high speed steel powder under vacuum and industrial atmospheres with free carbon addition. Powder Metall. 1989;32:291–299. doi:10.1179/pom.1989.32.4.291.
  • Borgstrom H, Nyborg L. Effect of vacuum annealing and nitrogen alloying on gas atomised M4 high speed steel powder. Powder Metall. 2006;49:48–56. doi:10.1179/174329006X98353.
  • Hryha E, Wendel J. Effect of heating rate and process atmosphere on the thermodynamics and kinetics of the sintering of pre-alloyed water-atomized PM steels. J Am Ceram Soc. 2018;102:748–756. doi:10.1111/jace.16079.
  • German RM. Supersolidus liquid-phase sintering of prealloyed powders. Metall Mater Trans A. 1997;28:1554–1567. doi:10.1007/s11661-997-0217-0.
  • Wright CS, Ogel B. Supersolidus sintering of high-speed steels: part 1: sintering of molybdenum based alloys. Powder Metall. 1993;36:213–219. doi:10.1179/pom.1993.36.3.213.
  • Wright CS, Ogel B, Lemoisson F, et al. Supersolidus sintering of high-speed steels: part 2: sintering of tungsten based alloys. Powder Metall. 2013;38:221–229. doi:10.1179/pom.1995.38.3.221.
  • Bolton JD, Gant AJ, Hague RJM. Liquid-phase sintering of high-speed steels. J Mater Sci. 1991;26:5203–5211. doi:10.1007/BF01143214.
  • Price WJC, Rebbeck MM, Wronski AS, et al. Effect of carbon additions on sintering to full density of BT1 grade high speed steel. Powder Metall. 1985;28:1–6. doi:10.1179/pom.1985.28.1.1.
  • Chen N, Luo R, Xiong H, et al. Dense M2 high speed steel containing core-shell MC carbonitrides using high-energy ball milled M2/VN composite powders. Mater Sci Eng A. 2020;771:138628.1–138628.9. doi:10.1016/j.msea.2019.138628.
  • Sun H, Chen C, Zhang Z, et al. PM high speed steel with high performance manufactured by super-fine powder with Low oxygen content. Rare Metal Mat Eng. 2019;48:3246–3250. CNKI: SUN: COSE.0.2019-10-027.
  • Zhang QK, Yao J, Shen WJ, et al. Direct fabrication of high-performance high-speed steel products enhanced by LaB6. Mater Des. 2016;112:469–478. doi:10.1016/j.matdes.2016.09.044.
  • Shen WJ, Yu L, Li Z, et al. In situ synthesis and strengthening of powder metallurgy high speed steel in addition of LaB6. Met Mater Int. 2017;23:1150–1157. doi:10.1007/s12540-017-7116-8.
  • Manchili SK, Wendel J, Hryha E, et al. Sintering of bimodal micrometre/nanometre iron powder compacts – a master sintering curve approach. Powder Technol. 2021;391:557–568. doi:10.1016/j.powtec.2021.06.052.
  • Gierl-Mayer C. Reactions between ferrous powder compacts and atmospheres during sintering – an overview. Powder Metall. 2021;63:237–253. doi:10.1080/00325899.2020.1810427.
  • Auchy G. The theory of high-speed steel. Sci Am. 1908;65:149–151. doi:10.1007/BF02468494.
  • Maulik P, Price WJC. Effect of carbon additions on sintering characteristics and microstructure of BT42 high speed steel. Powder Metall. 2013;30:240–248. doi:10.1179/pom.1987.30.4.240.
  • Liu ZH, Zhang DQ, Chua CK, et al. Crystal structure analysis of M2 high speed steel parts produced by selective laser melting. Mater Charact. 2013;84:72–80. doi:10.1016/j.matchar.2013.07.010.
  • Wronski AS, Rebbeck MM, Amen SA. Fracture mechanisms and mechanics of an 18-4-1 high speed steel. J Mater Sci. 1988;23:2213–2219. doi:10.1007/BF01115790.
  • Peng H, Hu L, Li L, et al. Evolution of the microstructure and mechanical properties of powder metallurgical high-speed steel S390 after heat treatment. J Alloys Compd. 2017;740:766–773. doi:10.1016/j.jallcom.2017.12.264.
  • Mondiere A, Déneux V, Binot N, et al. Controlling the MC and M2C carbide precipitation in ferrium M54steel to achieve optimum ultimate tensile strength/fracture toughness balance. Mater Charact. 2018;140:103–112. doi:10.1016/j.matchar.2018.03.041.
  • Yong QL. Secondary phases in steels. Beijing: Metallurgical Industry Press; 2006. p. 85–87.
  • Daigne J, Guttmann M, Naylor JP. The influence of lath boundaries and carbide distribution on the yield strength of 0.4% C tempered martensitic steels. Mater Sci Eng A. 1982;56:1–10. doi:10.1016/0025-5416(82)90176-8.
  • Yu P, Pi Z Q, Liu B W, et al. Influence of heat treatment on the microstructural evolution and mechanical properties of W6Mo5Cr4V2Co5Nb (825 K) high speed steel. Mater Sci Eng A. 2020;787:139480.1–139480.8. doi:10.1016/j.msea.2020.139480.
  • Eroglu S. Sintering and mechanical properties of AISI M2 high-speed steel powder molded at low pressures. Mater Manuf Process. 2010;25(9):1025–1029.1.
  • Romano P, Velasco F J, Torralba J M, et al. Processing of M2 powder metallurgy high-speed steel by means of starch consolidation. Mater Sci Eng A. 2006;419:1–7. doi:10.1016/j.msea.2005.07.063.
  • Sun H X, Yang F, Qin Q, et al. In-situ VN reinforced powder metallurgy M30 steels prepared from water atomized powers via pressureless sintering. Powder Metall. 2020;63:1–11. doi:10.1080/00325899.2020.1717075.
  • Leskovek V, Podgornik B. The 8th Pacific Rim International Congress on Advanced Materials and Processing. 2013 Aug 4-9. Waikoloa, HI. New Jersey: John Wiley and Sons Inc Press. 2013. p. 3387–3394.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.