249
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Numerical analysis of droplet breakup, cooling, and solidification during gas atomisation

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 493-508 | Received 25 Dec 2022, Accepted 08 May 2023, Published online: 20 May 2023

References

  • Antipas GS. Review of gas atomisation and spray forming phenomenology. Powder Metall. 2013;56(4):317–330.
  • Attar H, Prashanth KG, Chaubey AK, et al. Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Mater Lett. 2015;142:38–41.
  • Sabard A, de Villiers Lovelock HL, Hussain T. Microstructural evolution in solution heat treatment of gas-atomized Al alloy (7075) powder for cold spray. J Therm Spray Technol. 2018;27(1):145–158.
  • Gökce B, Barcikowski S, Fritsching U, et al. Prozessadaptierte materialien für die photonik. Photonik. 2015;1:24–28.
  • Ouyang H, Chen X, Yu W, et al. Progress and prospect on the gas atomization. Fenmo Yejin Jishu (Powder Metall Technol) (China). 2007;25(1):53–58.
  • Song C, Li K, Xie K, et al. The effect of the nucleation ability on solidified microstructures of gas-atomized Fe–6.5 wt.% Si alloy powder. Powder Technol. 2014;263:31–36.
  • Tong M, Browne DJ. Direct numerical simulation of melt–gas hydrodynamic interactions during the early stage of atomisation of liquid intermetallic. J Mater Process Technol. 2008;202(1–3):419–427.
  • Guo K-K, Chen J, Shang S, et al. Numerical simulation of atomization process of nickel-based alloy powders prepared by vacuum induction melting gas atomization. Vibroeng Proc. 2020;32:185–189.
  • Tong M, Browne DJ.eds. Modelling melt–gas dynamic interaction during initial stage gas atomisation of liquid intermetallic using a front tracking formulation, 2007.
  • Tong M, Browne DJ. Direct numerical simulation of melt–gas hydrodynamic interactions during the early stage of atomisation of liquid intermetallic. J Mater Process Technol. 2008;202:419–427.
  • Zeoli N, Tabbara H, Gu S. CFD modeling of primary breakup during metal powder atomization. Chem Eng Sci. 2011;66(24):6498–6504.
  • Zeoli N, Tabbara H, Gu S. Three-dimensional simulation of primary break-up in a close-coupled atomizer. Appl Phys A. 2012;108(4):783–792.
  • Zhao W, Cao F, Ning Z, et al. A computational fluid dynamics (CFD) investigation of the flow field and the primary atomization of the close coupled atomizer. Comput Chem Eng. 2012;40:58–66.
  • Mates SP, Settles GS. A study of liquid metal atomization using close-coupled nozzles, part 1: gas dynamic behavior. At Sprays. 2005;15(1):19–40.
  • Wang P, Li J, Liu H-S, et al. Process modeling gas atomization of close-coupled ring-hole nozzle for 316L stainless steel powder production. Chin Phys B. 2021;30(5):57502.
  • Firmansyah DA, Kaiser R, Zahaf R, et al. Numerical simulations of supersonic gas atomization of liquid metal droplets. Jpn J Appl Phys. 2014;53(5S3):05HA09.
  • Thompson JS, Hassan O, Rolland SA, et al. The identification of an accurate simulation approach to predict the effect of operational parameters on the particle size distribution (PSD) of powders produced by an industrial close-coupled gas atomiser. Powder Technol. 2016;291:75–85.
  • Xu L, Zhou X, Li J, et al. Numerical simulations of molten breakup behaviors of a de laval-type nozzle, and the effects of atomization parameters on particle size distribution. Processes. 2020;8(9):1027.
  • Li X, Du J, Wang L, et al. Effects of different nozzle materials on atomization results via CFD simulation. Chin J Chem Eng. 2020;28(2):362–368.
  • Bergmann D, Fritsching U, Bauckhage K. A mathematical model for cooling and rapid solidification of molten metal droplets. Int J Therm Sci. 2000;39(1):53–62.
  • Hattel JH, Pryds NH, Thorborg J, et al. A quasi-stationary numerical model of atomized metal droplets. I: model formulation. Modell Simul Mater Sci Eng. 1999;7(3):413.
  • Johnson SB, Delplanque J-P, Lin Y, et al. Numerical simulation and experimental characterization of a binary aluminum alloy spray-application to the spray rolling process. Idaho Falls (ID): Idaho National Lab.(INL).
  • Lena C, Djambazov G, Pericleous KA. Modelling metal powder production by the gas atomisation process, 08733971, 2008.
  • Li B, Liang X, Earthman JC, et al. Two dimensional modeling of momentum and thermal behavior during spray atomization of γ-TiAl. Acta Mater. 1996;44(6):2409–2420.
  • Mahesh NS, Mendonca J, Muralidhara MK, et al. Modeling of droplet dynamic and thermal behaviour during spray deposition. Bull Mater Sci. 2003;26(3):355–364.
  • Pryds NH, Hattel JH, Thorborg J. A quasi-stationary numerical model of atomized metal droplets. II: prediction and assessment. Modell Simul Mater Sci Eng. 1999;7(3):431.
  • Shukla P, Mandal RK, Ojha SN. Non-equilibrium solidification of undercooled droplets during atomization process. Bull Mater Sci. 2001;24(5):547–554.
  • Zhang M, Zhang Z. Numerical simulation study on cooling of metal droplet in atomizing gas. Mater Today Commun. 2020;25:101423.
  • Valencia JJ, Quested PN. Thermophysical properties, 08717071, 2008.
  • Mills KC, Youssef YM, Li Z, et al. Calculation of thermophysical properties of Ni-based superalloys. ISIJ Int. 2006;46(5):623–632.
  • Andon RJ, Chapman L, Day A, et al. Viscosities of liquid metals and commercial alloys, 1361–4061, 2000.
  • Hosaeus H, Seifter A, Kaschnitz E, et al. Thermophysical properties of solid and liquid inconel 718 alloy. High Temp High Press(UK). 2001;33(4):405–410.
  • Kamnis S, Gu S, Zeoli N. Mathematical modelling of inconel 718 particles in HVOF thermal spraying. Surf Coat Technol. 2008;202(12):2715–2724.
  • Poinsot T, Veynante D. Theoretical and numerical combustion. Philadelphia: RT Edwards, Inc; 2005.
  • Kuo KK, Acharya R. Fundamentals of turbulent and multiphase combustion. Hoboken, New Jersey: John Wiley & Sons; 2012.
  • Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys. 1981;39(1):201–225.
  • Hwang SS, Liu Z, Reitz RD. Breakup mechanisms and drag coefficients of high-speed vaporizing liquid drops. At Sprays. 1996;6(3):353–376.
  • Beale JC, Reitz RD. Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model. At Sprays. 1999;9(6):623–650.
  • Anderson IE, Figliola RS, Morton H. Flow mechanisms in high pressure gas atomization. Mater Sci Eng A. 1991;148(1):101–114.
  • Ting J, Anderson IE, Terpstra R, et al. Design and testing of an improved convergent-divergent discrete-jet high pressure gas atomization nozzle. Metal Pow Indus Fed, Adv Pow Metall Particul Mater. 1998;3:10.
  • Ting J, Terpstra R, Anderson IE, et al. A novel high pressure gas atomizing nozzle for liquid metal atomization. Adv Powder Metall Part Mater. 1996;1:1.
  • Ünal A. Effect of processing variables on particle size in gas atomization of rapidly solidified aluminium powders. Mater Sci Technol. 1987;3(12):1029–1039.
  • Zeoli N, Gu S. Numerical modelling of droplet break-up for gas atomisation. Comput Mater Sci. 2006;38(2):282–292.
  • Zeoli N, Gu S. Computational validation of an isentropic plug nozzle design for gas atomisation. Comput Mater Sci. 2008;42(2):245–258.
  • Markus S, Fritsching U, Bauckhage K. Jet break up of liquid metal in twin fluid atomisation. Mater Sci Eng A. 2002;326(1):122–133.
  • Zou H, Xiao Z. Pre-breakup mechanism of free-fall nozzle in electrode induction melting gas atomization. Mater Today Commun. 2021;29:102778.
  • Urionabarrenetxea E, Martín JM, Rivas A, et al. Experimental study and simulation of the gas flow in the atomisation chamber during close-coupled gas atomisation. Proceedings of the international powder metallurgy congress and exhibition, Euro PM; 2013; pp. 257–262.
  • Ünal A. Effect of processing variables on particle size in gas atomization of rapidly solidified aluminium powders. Mater Sci Technol. 1987;3(12):1029–1039.
  • Mates SP, Ridder SD, Biancaniello FS. Comparison of the supersonic length and dynamic pressure characteristics of discrete-jet and annular close-coupled nozzles used to produce fine metal powders, 2000.
  • Achelis L, Uhlenwinkel V, Lagutkin S, et al. Atomization using a pressure-gas-atomizer. Mater Sci Forum. 2007;534-536:13–16.
  • Achelis L, Uhlenwinkel V. Characterisation of metal powders generated by a pressure-gas-atomiser. Mater Sci Eng A. 2008;477(1):15–20.
  • Zheng B, Lin Y, Zhou Y, et al. Gas atomization of amorphous aluminum: part I. thermal behavior calculations. Metall Mater Trans B. 2009;40(5):768–778.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.