116
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Miniaturised test-setup for Spark Plasma Sintering – experimental and numerical investigations

, , , &
Pages 461-471 | Received 04 Aug 2022, Accepted 24 May 2023, Published online: 13 Jun 2023

References

  • Inoue K. Electric-discharge sintering. United States patent US 3,241,956. 1966.
  • Guillon O, Gonzalez-Julian J, Dargatz B, et al. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater. 2014;16:830–849. doi:10.1002/adem.201300409.
  • Olevsky EA, Dudina DV. Field-assisted sintering. Cham: Springer; 2018. doi:10.1007/978-3-319-76032-2
  • Orrù R, Licheri R, Locci AM, et al. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R Rep. 2009;63:127–287. doi:10.1016/­j.mser.2008.09.003.
  • Munir ZA, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci. 2006;41:763–777. doi:10.1007/s10853-006-6555-2.
  • Collard C, Trzaska Z, Durand L, et al. Theoretical and experimental investigations of local overheating at particle contacts in spark plasma sintering. Powder Technol. 2017;321:458–470. doi:10.1016/j.powtec.2017.08.033.
  • Mamedov V. Spark plasma sintering as advanced PM sintering method. Powder Metall. 2002;45:322–328. doi:10.1179/003258902225007041.
  • Zadra M, Casari F, Girardini L, et al. Spark plasma sintering of pure aluminium powder: mechanical properties and fracture analysis. Powder Metall. 2007;50(1):40–45. doi:10.1179/174329007X186417.
  • Yamanoglu R, Bradbury W, Karakulak E, et al. Characterisation of nickel alloy powders processed by spark plasma sintering. Powder Metall. 2014;57(5):380–386. doi:10.1179/1743290114Y.0000000088.
  • Trapp J, Semenov AS, Nöthe M, et al. Fundamental principles of spark plasma sintering of metals: part III – densification by plasticity and creep deformation. Powder Metall. 2020;63(5):329–337. doi:10.1080/00325899.2020.1834748.
  • Hulbert DM, Anders A, Dudina DV, et al. The absence of plasma in spark plasma sintering. J Appl Phys 2008;104(3):033305–7. doi:10.1063/1.2963701.
  • Fabrègue D, Piallat J, Maire E, et al. Spark plasma sintering of pure iron nanopowders by simple route. Powder Metall. 2012;55:76–79. doi:10.1179/1743290111Y.0000000004.
  • Zavaliangos A, Zhang J, Krammer M, et al. Temperature evolution during field activated sintering. Mater Sci Eng. A. 2004;379:218–228. doi:10.1016/j.msea.2004.01.052.
  • Vanmeensel K, Laptev A, Hennicke J, et al. Modelling of the temperature distribution during field assisted sintering. Acta Mater. 2005;53:4379–4388. doi:10.1016/J.ACTAMAT.2005.05.042.
  • Anselmi-Tamburini U, Gennari S, Garay JE, et al. Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions. Mater Sci Eng A. 2005;394:139–148. doi:10.1016/J.MSEA.2004.11.019.
  • Muñoz S, Anselmi-Tamburini U. Parametric investigation of temperature distribution in field activated sintering apparatus. Int J Adv Manuf Technol. 2013;65:127–140. doi:10.1007/s00170-012-4155-7.
  • Pavia A, Durand L, Ajustron F, et al. Electro-thermal measurements and finite element method simulations of a spark plasma sintering device. J Mater Process Technol. 2013;213:1327–1336. doi:10.1016/j.jmatprotec.2013.02.003.
  • Achenani Y, Saâdaoui M, Cheddadi A, et al. Finite element modeling of spark plasma sintering: application to the reduction of temperature inhomogeneities, case of alumina. Mater Des. 2017;116:504–514. doi:10.1016/j.matdes.2016.12.054.
  • Giuntini D, Olevsky EA, Garcia-Cardona C, et al. Localized overheating phenomena and optimization of spark-plasma sintering tooling design. Materials (Basel). 2013;6:2612–2632. doi:10.3390/ma6072612.
  • Exner HE. Grundlagen von sintervorgängen. Berlin/Stuttgart: Gebrüder Borntraeger; 1978.
  • Frei JM, Anselmi-Tamburini U, Munir ZA. Current effects on neck growth in the sintering of copper spheres to copper plates by the pulsed electric current method. J Appl Phys. 2007;101:114914, doi:10.1063/1.2743885.
  • Schütte P, Hill H, Moll H, et al. Densification of high wear and corrosion resistant steels by electro discharge sintering. Proceedings of HIP 2011, Kobe, Japan; Editor: Prof. Kozo Ishizaki, 12–14 April 2011; pp. 145–150.
  • Saunders T, Grasso S, Reece MJ. Plasma formation during electric discharge (50 V) through conductive powder compacts. J Eur Ceram Soc. 2015;35:871–877. doi:10.1016/j.jeurceramsoc.2014.09.022.
  • Trapp J, Kieback B. Temperature distribution in metallic powder particles during initial stage of field-activated sintering. J Am Ceram Soc. 2015;98:3547–3552. doi:10.1111/jace.13757.
  • Rogachev AS, Vadchenko SG, Kudryashov VA, et al. Direct observation of processes at particle-to-particle contacts during electric pulse consolidation of a titanium powder. Dokl Phys Chem. 2019;488:151–153. doi:10.1134/S001250161910004X.
  • Trapp J, Semenov AS, Eberhardt O, et al. Fundamental principles of spark plasma sintering of metals: part II – about the existence or non-existence of the ‘spark plasma effect’. Powder Metall. 2020;63:312–328. doi:10.1080/00325899.2020.1829349.
  • Trapp J, Kieback B. Fundamental principles of spark plasma sintering of metals: part I – joule heating controlled by the evolution of powder resistivity and local current densities. Powder Metall. 2019;62:297–306. doi:10.1080/00325899.2019.1653532.
  • Semenov AS, Trapp J, Nöthe M, et al. Experimental and numerical analysis of the initial stage of field-assisted sintering of metals. J Mater Sci. 2017;52(3):1486–1500. doi:10.1007/s10853-016-0444-0.
  • Semenov AS, Trapp J, Nöthe M, et al. Thermo-electro-mechanical modeling, simulation and experiments of field-assisted sintering. J Mater Sci. 2019;54(15):10764–10783. doi:10.1007/s10853-019-03653-y.
  • Zinoviev VE. Thermo-physical properties of metals at high temperatures. Moscow: Metalurgia; 1989.
  • https://www.plansee.com/en/materials/molybdenum.html (accessed 09.05.2023).
  • Vanmeensel K, Laptev A, Hennicke J, et al. Modelling of the temperature distribution during field assisted sintering. Acta Mater. 2005;53:4379–4388. doi:10.1016/j.actamat.2005.05.042.
  • Sergeev OA, Shashkov AG, Umanskii AS. Thermophysical properties of quartz glass. J Eng Phys. 1982;43:1375–1383. doi:10.1007/BF00824797.
  • Semenov AS, Trapp J, Nöthe M, et al. Thermo-electro-mechanical modeling of spark plasma sintering processes accounting for grain boundary diffusion and surface diffusion. Comput Mech. 2021;67(5):1395–1407. doi:10.1007/s00466-021-01994-7.
  • Semenov AS, Trapp J, Nöthe M, et al. Multi-physics simulation and experimental validation of the densification of metals by spark plasma sintering. Adv Eng Mater. 2023 (submitted).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.