96
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Consolidation and properties of porous Cu–Al–Ni shape memory alloys manufactured by powder metallurgy

, , & ORCID Icon
Pages 548-556 | Received 07 Nov 2022, Accepted 11 May 2023, Published online: 23 Jun 2023

References

  • Lagoudas D. Shape memory alloys. Boston (MA): Springer; 2008.
  • Otsuka K, Wayman CM. Shape memory materials. Cambridge: Cambridge University Press; 1999.
  • Duerig TW, Melton KN, Stockel D, et al. Engineering aspects of shape memory alloys. London: Butterworth-Heinemann; 1990; Wu MH, Cu-based shape memory alloys, 69–87.
  • Mazzer EM, da Silva MR, Gargarella P. Revisiting Cu-based shape memory alloys: recent developments and new perspectives. J Mater Res. 2022;37(1):162–182. doi:10.1557/s43578-021-00444-7
  • Lester BT, Baxevanis T, Chemisky Y, et al. Review and perspectives: shape memory alloy composite systems. Acta Mech. 2015;226:3907–3960. doi:10.1007/s00707-015-1433-0
  • Pant DC, Pal S. Phase transformation and energy dissipation of porous shape memory alloy structure under blast loading. Mech Mater. 2019;132:31–46. doi:10.1016/j.mechmat.2019.02.010
  • Sepe V, Marfia S, Auricchio F. Response of porous SMA: a micromechanical study. Fra Integrità Strutt. 2014;8(29):85–96. doi:10.3221/IGF-ESIS.29.09
  • Wang Q, Han F, Wu J, et al. Damping behavior of porous CuAlMn shape memory alloy. Mater Lett. 2007;61(11-12):2598–2600. doi:10.1016/j.matlet.2006.10.007
  • Castrodeza EM, Mapelli C, Vedani M, et al. Processing of shape memory CuZnAl open-cell foam by molten metal infiltration. J Mater Eng Perform. 2009;18:484–489. doi:10.1007/s11665-009-9398-6
  • Bertolino G, Arneodo Larochette PA, Castrodeza E, et al. Mechanical properties of martensitic Cu–Zn–Al foams in the pseudoelastic regime. Mater Lett. 2010;64(13):1448–1450. doi:10.1016/j.matlet.2010.03.052
  • Bertolino G, Gruttadauria A, Arneodo Larochette P, et al. Cyclic pseudoelastic behavior and energy dissipation in as-cast Cu-Zn-Al foams of different densities. Intermetallics. 2011;19:577–585. doi:10.1016/j.intermet.2010.12.008
  • Yuan B, Zheng P, Gao Y, et al. Effect of directional solidification and porosity upon the superelasticity of Cu–Al–Ni shape-memory alloys. Mater Des. 2015;80:28–35. doi:10.1016/j.matdes.2015.05.001
  • Agrawal A, Dube RK. Methods of fabricating Cu-Al-Ni shape memory alloys. J Alloys Compd. 2018;750:235–247. doi:10.1016/j.jallcom.2018.03.390
  • Lojen G, Anzel I, Kneissl A, et al. Microstructure of rapidly solidified Cu–Al–Ni shape memory alloy ribbons. J Mater Process Technol. 2005;162–163:220–229. doi:10.1016/j.jmatprotec.2005.02.196
  • Turpeinen T. Analysis of microtomographic images of porous heterogeneous materials, ISBN 978-951-39-6446-7 (PDF). Jyväsk stud comput. 2015; University of Jyväskylä.
  • Rao A, Srinivasa A, Reddy J. Design of shape memory alloy (SMA) actuators. Springer Cham: Springer- Briefs in Applied Sciences and Technology; 2015.
  • Recarte V, Perez-Saez RB, Bocanegra EH, et al. Dependence of the martensitic transformation characteristics on concentration in Cu-Al-Ni shape memory alloys. Mater Sci Eng A. 1999;273-275:380–384. doi:10.1016/S0921-5093(99)00302-0
  • Miyazaki S, Otsuka K. Development of shape memory alloys. ISIJ Int. 1989;29:353–377. doi:10.2355/isijinternational.29.353
  • Chang SH. Influence of chemical composition on the damping characteristics of Cu–Al–Ni shape memory alloys. Mater Chem Phys. 2011;125:358–363. doi:10.1016/j.matchemphys.2010.09.077
  • Munir ZA. Surface oxides and sintering of metals. Powder Metall. 1981;24(4):177–180. doi:10.1179/pom.1981.24.4.177
  • Zhang J, Zhang Y, Wang G, et al. The development of a 3D mesoscopic model of metallic foam based on an improved watershed algorithm. Model Simul Mater Sci Eng. 2018;26:1–16.
  • Banhart J. Advanced tomographic methods in materials research and engineering. Oxford: Oxford University Press; 2008.
  • Gibson L, Ashby M. Cellular solids: structure and properties. Cambridge: Cambridge University Press; 1997.
  • Köhl M, Bram M, Moser A, et al. Characterization of porous, net-shaped NiTi alloy regarding its damping and energy-absorbing capacity. Mater Sci Eng A. 2011;528(6):2454–2462. doi:10.1016/j.msea.2010.11.055
  • Yw K, Do D. Shape memory characteristics of highly porous Ti-rich TiNi alloys. Mater Lett. 2016;162:1–4. doi:10.1016/j.matlet.2015.09.101
  • Itin VI, Gyunter VE, Shabalovskaya SA, et al. Mechanical properties and shapvkxclñbke memory of porous nitinol. Mater Charact. 1994;32(3):179–187. doi:10.1016/1044-5803(94)90087-6
  • Ashby M, Evans A, Fleck N, et al. Metal foams. Burlington: Butterworth-Heineman; 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.