184
Views
0
CrossRef citations to date
0
Altmetric
Manuscripts from the International Conference on Novel and Nano Materials ISNNM-2022, held in Jeju, Korea, November 14-18, 2022

Influence of the initial powder characteristic on the densified tungsten microstructure by spark plasma sintering and hot isostatic pressing

, , , , ORCID Icon & ORCID Icon
Pages 644-649 | Received 28 Feb 2023, Accepted 14 Jun 2023, Published online: 23 Jun 2023

References

  • Lassner E, Schubert WD. Tungsten: properties, chemistry, technology of the elements, alloys, and chemical compounds. Vienna: Kluwer Academic/Plenum; 1999.
  • Lee ES, Heo YJ, Lee YI, et al. Microstructural characterization and densification of W-1 wt% La2O3 composite powders synthesized by ultrasonic spray pyrolysis. J Mater Sci. 2022;57(38):17946–17956. doi:10.1007/s10853-022-07478-0
  • Muñoz A, Savoini B, Tejado E, et al. Microstructural and mechanical characteristics of W–2Ti and W–1TiC processed by hot isostatic pressing. J Nucl Mater. 2014;455(1-3):306–310. doi:10.1016/j.jnucmat.2014.06.064
  • Shen T, Dai Y, Lee Y. Microstructure and tensile properties of tungsten at elevated temperatures. J Nucl Mater. 2016;468:348–354. doi:10.1016/j.jnucmat.2015.09.057
  • Trzaska M. Correlation between the temperature distribution and the structure of resistance sintered tungsten bars. Int J Refract Met Hard Mat. 1996;14(4):235–243. doi:10.1016/0263-4368(95)00048-8
  • Fang ZZ, Wang H, Kumar V. Coarsening, densification, and grain growth during sintering of nano-sized powders – a perspective. Int J Refract Met Hard Mat. 2017;62:110–117. doi:10.1016/j.ijrmhm.2016.09.004
  • Kang H, Jeong YK, Oh ST. Hydrogen reduction behavior and microstructural characteristics of WO3 and WO3-NiO powders. Int J Refract Met Hard Mat. 2019;80:69–72. doi:10.1016/j.ijrmhm.2018.12.013
  • Byun JM, Lee ES, Heo YJ, et al. Consolidation and properties of tungsten by spark plasma sintering and hot isostatic pressing. Int J Refract Met Hard Mat. 2021;99:105602. doi:10.1016/j.ijrmhm.2021.105602
  • Tsai SC, Song YL, Tsai CS, et al. Ultrasonic spray pyrolysis for nanoparticles synthesis. J Mater Sci. 2004;39(11):3647–3657. doi:10.1023/B:JMSC.0000030718.76690.11
  • Kim JH, Ji M, Byun J, et al. Fabrication of W-Y2O3 composites by ultrasonic spray pyrolysis and spark plasma sintering. Int J Refract Met Hard Mat. 2021;99:105606. doi:10.1016/j.ijrmhm.2021.105606
  • Tamari N, Tanaka T, Tanaka K, et al. Effect of spark plasma sintering on densification and mechanical properties of silicon carbide. J Ceram Soc Jpn. 1995;103(7):740–742. doi:10.2109/jcersj.103.740
  • Deng S, Yuan T, Li R, et al. Spark plasma sintering of pure tungsten powder: densification kinetics and grain growth. Powder Techn. 2017;310:264–271. doi:10.1016/j.powtec.2017.01.050
  • Bocanegra-Bernal MH. Hot isostatic pressing (HIP) technology and its applications to metals and ceramics. J Mater Sci. 2004;39(21):6399–6420. doi:10.1023/B:JMSC.0000044878.11441.90
  • Lee G, McKittrick J, Ivanov E, et al. Densification mechanism and mechanical properties of tungsten powder consolidated by spark plasma sintering. Int J Refract Met Hard Mat. 2016;61:22–29. doi:10.1016/j.ijrmhm.2016.07.023
  • Lee ES, Lee G, Lee YI, et al. Fabrication of W–Y2O3–La2O3 composite by chemical process and spark plasma sintering. Powder Metall. 2021;64(2):108–114. doi:10.1080/00325899.2021.1883253
  • Wilken TR, Morcom WR, Wert CA, et al. Reduction of tungsten oxide to tungsten metal. Metall Trans B. 1976;7:589–597. doi:10.1007/BF02698592
  • Choi WJ, Kim JH, Lee H, et al. Hydrogen reduction behavior of W/Y2O3 powder synthesized by ultrasonic spray pyrolysis. Int J Refract Met H. 2021;95:105450. doi:10.1016/j.ijrmhm.2020.105450
  • Heo YJ, Lee ES, Oh ST, et al. Pressureless sintering and microstructure of pure tungsten powders prepared by ultrasonic spray pyrolysis. J Powder Mater. 2022;29(3):247–251. doi:10.4150/KPMI.2022.29.3.247
  • Dogan F, Roosen A, Hausner H. Agglomerate formation, compact characteristics and sintering behaviour of ceramic powders. J Physique Colloques. 1986;47(C1):231–235. doi:10.1051/jphyscol:1986134
  • Shi JL, Gao JH, Lin ZX, et al. Sintering behavior of fully agglomerated zirconia compacts. J Am Ceram Soc. 1991;74(5):994–997. doi:10.1111/j.1151-2916.1991.tb04333.x
  • Yoon ES, Lee JS, Oh ST, et al. Microstructure and sintering behavior of W–Cu nanocomposite powder produced by thermo-chemical process. Int J Refract Met Hard Mat. 2002;20(3):201–206. doi:10.1016/S0263-4368(02)00003-3
  • Knorr P, Nam JG, Lee JS. Sintering behavior of nanocrystalline (-Ni-Fe powders). Metall Mater Trans. 2000;31A:503–510. doi:10.1007/s11661-000-0286-9
  • Song JI, Lee GY, Hong EJ, et al. Sintering behavior of bimodal iron nanopowder agglomerates. J Am Ceram Soc. 2019;102(6):3791–3801. doi:10.1111/jace.16240
  • Wu JM, Wu CH. Sintering behaviour of highly agglomerated ultrafine zirconia powders. J Mater Sci. 1988;23:3290–3299. doi:10.1007/BF00551308
  • Lee JS, Yun JC, Choi JP, et al. Consolidation of iron nanopowder by nanopowder-agglomerate sintering at elevated temperature. J Kor Powd Met Inst. 2013;20(1):1–6. doi:10.4150/KPMI.2013.20.1.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.