293
Views
0
CrossRef citations to date
0
Altmetric
Manuscripts from the International Conference on Novel and Nano Materials ISNNM-2022, held in Jeju, Korea, November 14-18, 2022

High-speed manufacturing-driven strength-ductility improvement of H13 tool steel fabricated by selective laser melting

, , , , , , & ORCID Icon show all
Pages 582-592 | Received 27 Feb 2023, Accepted 23 Jul 2023, Published online: 31 Jul 2023

References

  • Axinte DA, Dewes RC, et al. Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. J Mater Process Technol. 2002;127(3):325–335. doi:10.1016/S0924-0136(02)00282-0
  • Mazur M, Leary M, McMillan M, et al. SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. Rapid Prototyp J. 2016;22(3):504–518. doi:10.1108/RPJ-06-2014-0075
  • Tan QY, Yin Y, Wang F, et al. Rationalization of brittleness and anisotropic mechanical properties of H13 steel fabricated by selective laser melting. Scr Mater. 2022;214:114645, doi:10.1016/j.scriptamat.2022.114645
  • Bodziak S, Al-Rubaie KS, Valentina LD, et al. Precipitation in 300 grade maraging steel built by selective laser melting: aging at 510 °C for 2 h. Mater Charact. 2019;151:73–83. doi:10.1016/j.matchar.2019.02.033
  • Zhu J, Zhang Z, Xie J. Improving strength and ductility of H13 die steel by pre-tempering treatment and its mechanism. Mater Sci Eng A. 2019;752:101–114. doi:10.1016/j.msea.2019.02.085
  • Bosio F, Aversa A, Lorusso M, et al. A time-saving and cost-effective method to process alloys by laser powder bed fusion. Mater Des. 2019;181:107949, doi:10.1016/j.matdes.2019.107949
  • Song X, Feih S, Zhai W, et al. Advances in additive manufacturing process simulation: residual stresses and distortion predictions in complex metallic components. Mater Des. 2020;193:108779, doi:10.1016/j.matdes.2020.108779
  • Günther J, Leuders S, Koppa P, et al. On the effect of internal channels and surface roughness on the high-cycle fatigue performance of Ti-6Al-4V processed by SLM. Mater Des. 2018;143:1–11. doi:10.1016/j.matdes.2018.01.042
  • Park JM Microstructure and Mechanical Properties of CoCrFeMnNi-type High-entropy Alloy Fabricated by Selective Laser Melting: A Review. J Powder Mater. 2021;29(2):132–151. doi:10.4150/KPMI.2022.29.2.132
  • Park H, Kim YW, Lee S, et al. Effect of Bulk Shape on Mechanical Properties of Ti-6Al-4V Alloy Manufactured by Laser Powder Bed Fusion. J.Powder Mater. 2023;30:140–145. doi:10.4150/KPMI.2023.30.2.140
  • Lee J, Choe J, Park J, et al. Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions. Mater Charact. 2019;155:109817, doi:10.1016/j.matchar.2019.109817
  • Yonehara M, Ikeshoji T, Nagahama T, et al. Parameter optimization of the high-power laser powder bed fusion process for H13 tool steel. Int J Adv Manuf Technol. 2020;110(1-2):427–437. doi:10.1007/s00170-020-05879-6
  • Åsberg M, Fredriksson G, Hatami S, et al. Influence of post treatment on microstructure, porosity and mechanical properties of additive manufactured H13 tool steel. Mater Sci Eng A. 2019;742:584–589. doi:10.1016/j.msea.2018.08.046
  • Kahlert M, Brenne F, Vollmer M, et al. Influence of Microstructure and Defects on Mechanical Properties of AISI H13 Manufactured by Electron Beam Powder Bed Fusion. J Mater Eng Perform. 2021;30(9):6895–6904. doi:10.1007/s11665-021-06059-7
  • Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi:10.1016/j.actamat.2016.07.019
  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature. 2017;549(7672):365–369. doi:10.1038/nature23894
  • Park JM, Choe J, Kim JG, et al. Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting. Mater Res Lett. 2020;8(1):1–7. doi:10.1080/21663831.2019.1638844
  • Zhang M, Yu Q, Liu Z, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency. Sci Adv. 2020;6(19):1–9. doi:10.1126/sciadv.aba5581
  • Savrai RA, Toporova DV, Bykova TM. Improving the quality of AISI H13 tool steel produced by selective laser melting. Opt Laser Technol. 2022;152:108128), doi:10.1016/j.optlastec.2022.108128
  • Katancik M, Mirzababaei S, Ghayoor M, et al. Selective laser melting and tempering of H13 tool steel for rapid tooling applications. J Alloys Compd. 2020;849:156319), doi:10.1016/j.jallcom.2020.156319
  • Mukherjee T, DebRoy T, Lienert TJ, et al. Spatial and temporal variation of hardness of a printed steel part. Acta Mater. 2021;209:116775), doi:10.1016/j.actamat.2021.116775
  • Deirmina F, Peghini N, AlMangour B, et al. Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing. Mater Sci Eng A. 2019;753:109–121. doi:10.1016/j.msea.2019.03.027
  • Fonseca EB, Gabriel AHG, Araújo LC., et al. Assessment of laser power and scan speed influence on microstructural features and consolidation of AISI H13 tool steel processed by additive manufacturing. Addit Manuf. 2020;34:101250. doi:10.1016/j.addma.2020.101250
  • He Y, Zhong M, Beuth J, et al. A study of microstructure and cracking behavior of H13 tool steel produced by laser powder bed fusion using single-tracks, multi-track pads, and 3D cubes. J Mater Process Technol. 2020;286:116802. doi:10.1016/j.jmatprotec.2020.116802
  • Narvan M, Ghasemi A, Fereiduni E, et al. Part deflection and residual stresses in laser powder bed fusion of H13 tool steel. Mater Des. 2021;204:109659. doi:10.1016/j.matdes.2021.109659
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – Process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi:10.1016/j.pmatsci.2017.10.001
  • Narvan M, Al-Rubaie KS, Elbestawi M. Process-Structure-Property Relationships of AISI H13 Tool Steel Processed with Selective Laser Melting. Materials. 2019;12(14):2284. doi:10.3390/ma12142284
  • Holzweissig MJ, Taube A, Brenne F, et al. Microstructural Characterization and Mechanical Performance of Hot Work Tool Steel Processed by Selective Laser Melting. Metall Mater Trans B. 2015;46(2):545–549. doi:10.1007/s11663-014-0267-9
  • Huang G, Wei K, Zeng X. Microstructure and mechanical properties of H13 tool steel fabricated by high power laser powder bed fusion. Mater Sci Eng A. 2022;858:144154. doi:10.1016/j.msea.2022.144154
  • Tan Q, Chang H, Yin Y, et al. Simultaneous enhancements of strength and ductility of a selective laser melted H13 steel through inoculation treatment. Scr Mater. 2022;219:114874. doi:10.1016/j.scriptamat.2022.114874
  • Karthik GM, Kim HS. Heterogeneous Aspects of Additive Manufactured Metallic Parts: A Review. Met Mater Int. 2021;27(1):1–39. doi:10.1007/s12540-020-00931-2
  • Park JM, Moon J, Bae JW, et al. Effect of annealing heat treatment on microstructural evolution and tensile behavior of Al0.5CoCrFeMnNi high-entropy alloy. Mater Sci Eng A. 2018;728:251–258. doi:10.1016/j.msea.2018.05.041
  • Kong D, Dong C, Wei S, et al. About metastable cellular structure in additively manufactured austenitic stainless steels. Addit Manuf. 2021;38:101804. doi:10.1016/j.addma.2020.101804
  • Wang M, Li W, Wu Y, et al. High-Temperature Properties and Microstructural Stability of the AISI H13 Hot-Work Tool Steel Processed by Selective Laser Melting. Metall Mater Trans B. 2019;50(1):531–542. doi:10.1007/s11663-018-1442-1
  • Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 2006;54(5):1279–1288. doi:10.1016/j.actamat.2005.11.001
  • Krauss G. Steels: heat treatment and processing principles. Materials park, Ohio: ASM; 1990;497.
  • Jägle E, Sheng Z, Kürnsteiner P, et al. Comparison of Maraging Steel Micro- and Nanostructure Produced Conventionally and by Laser Additive Manufacturing. Materials. 2017;10(1):8. doi:10.3390/ma10010008
  • Dilip JJS, Ram GDJ, Starr TL, et al. Selective laser melting of HY100 steel: Process parameters, microstructure and mechanical properties. Addit Manuf. 2017;13:49–60. doi:10.1016/j.addma.2016.11.003
  • Bhadeshia H, Honeycombe rR. Steels: microstructure and properties. 4th ed. UK: Butterworth-Heinemann; 2017.
  • Krell J, Röttger A, Geenen K, et al. General investigations on processing tool steel X40CrMoV5-1 with selective laser melting. J Mater Process Technol. 2018;255:679–688. doi:10.1016/j.jmatprotec.2018.01.012
  • Saeidi K, Gao X, Zhong Y, et al. Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater Sci Eng: A. 2015;625:221–229. doi:10.1016/j.msea.2014.12.018
  • Shen YF, Qiu LN, Sun X, et al. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels. Mater Sci Eng A. 2015;636:551–564. doi:10.1016/j.msea.2015.04.030
  • Zou Y, Xu YB, Han DT, et al. Combined contribution of Cu-rich precipitates and retained austenite on mechanical properties of a novel low-carbon medium-Mn steel plate. J Mater Sci. 2019;54(4):3438–3454. doi:10.1007/s10853-018-3021-x
  • Seo EJ, Cho L, De Cooman BC. Application of Quenching and Partitioning (Q&P) Processing to Press Hardening Steel. Metall Mater Trans A. 2014;45(9):4022–4037. doi:10.1007/s11661-014-2316-z
  • Zhang C, Wang Q, Ren J, et al. Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel. Mater Sci Eng A. 2012;534:339–346. doi:10.1016/j.msea.2011.11.078
  • Ren B, Lu D, Zhou R, et al. Preparation and mechanical properties of selective laser melted H13 steel. J Mater Res. 2019;34(08):1415–1425. doi:10.1557/jmr.2019.10
  • Erdogan M, Tekeli S. The effect of martensite particle size on tensile fracture of surface-carburised AISI 8620 steel with dual phase core microstructure. Mater Des. 2002;23(7):597–604. doi:10.1016/S0261-3069(02)00065-1
  • Zhao M, Li JC, Jiang Q. Hall–Petch relationship in nanometer size range. J Alloys Compd. 2003;361(1-2):160–164. doi:10.1016/S0925-8388(03)00415-8
  • Wang YM, Voisin T, McKeown JT, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater. 2018;17(1):63–71. doi:10.1038/nmat5021
  • Chadha K, Tian Y, Nyamuchiwa K, et al. Austenite transformation during deformation of additively manufactured H13 tool steel. Mater Tod Comm. 2022;33:104332. doi:10.1016/j.mtcomm.2022.104332
  • Mohles V. Metastable Austenite in 17-4 Precipitation-Hardening Stainless Steel Produced by Selective Laser Melting. Adv Eng Mater. 2010;12(3):184–188. doi:10.1002/adem.v12:3
  • Sun B, Fazeli F, Scott C, et al. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions. Mater Sci Eng A. 2018;729:496–507. doi:10.1016/j.msea.2018.04.115
  • Zhao X, Lv Y, Dong S, et al. The effect of thermal cycling on direct laser-deposited gradient H13 tool steel: Microstructure evolution, nanoprecipitation behaviour, and mechanical properties. Mater Today Commun. 2020;25:101390. doi:10.1016/j.mtcomm.2020.101390
  • Yan J, Song H, Dong Ya, et al. High strength (~2000 MPa) or highly ductile (~11%) additively manufactured H13 by tempering at different conditions. Mater Sci Eng A. 2020;773:138845. doi:10.1016/j.msea.2019.138845
  • Mertens R, Vrancken B, Holmstock N, et al. Influence of Powder Bed Preheating on Microstructure and Mechanical Properties of H13 Tool Steel SLM Parts. Phys Procedia. 2016;83:882–890. doi:10.1016/j.phpro.2016.08.092
  • Kürnsteiner P, Wilms MB, Weisheit A, et al. High-strength Damascus steel by additive manufacturing. Nature. 2020;582(7813):515–519. doi:10.1038/s41586-020-2409-3
  • Karimi P, Sadeghi E, Ålgårdh J, et al. Columnar-to-equiaxed grain transition in powder bed fusion via mimicking casting solidification and promoting in situ recrystallization. Addit Manuf. 2021;46:102086. doi:10.1016/j.addma.2021.102086
  • Shamsdini SAR, Shakerin S, Hadadzadeh A, et al. A trade-off between powder layer thickness and mechanical properties in additively manufactured maraging steels. Mater Sci Eng A. 2020;776:139041. doi:10.1016/j.msea.2020.139041
  • Mao Z, Lu X, Yang H, et al. Processing optimization, microstructure, mechanical properties and nanoprecipitation behavior of 18Ni300 maraging steel in selective laser melting. Mater Sci Eng A. 2022;830:142334. doi:10.1016/j.msea.2021.142334

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.