239
Views
0
CrossRef citations to date
0
Altmetric
Manuscripts from the International Conference on Novel and Nano Materials ISNNM-2022, held in Jeju, Korea, November 14-18, 2022

Synthesis of Li1.3Al0.3Ti1.7(PO4)3-coated LiCoO2 cathode powder for all-solid-state lithium batteries

, , , , & ORCID Icon
Pages 714-721 | Received 01 Mar 2023, Accepted 01 Aug 2023, Published online: 22 Aug 2023

References

  • Kim S, Oguchi H, Toyama N, et al. A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. Nat Comm. 2019;10(1):1081. doi:10.1038/s41467-019-09061-9
  • Jung WD, Kim JS, Choi S, et al. Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal growth. Nano Lett. 2020;20(4):2303–2309. doi:10.1021/acs.nanolett.9b04597
  • Park CH, Lee SS, Kim KB, et al. Electrochemical properties of composite cathode using bimodal sized electrolyte for All-solid-state batteries. J Electrochem Soc. 2019;166(3):A5318–A5322. doi:10.1149/2.0481903jes
  • Xi L, Zhang D, Xu X, et al. The interface engineering of all–solid–state batteries based on inorganic solid electrolytes. ChemSusChem. 2023: e202202158. doi:10.1002/cssc.202202158
  • Lin C, Issues LS. Developments, and computation analyses of interfacial stability in all-solid-state Li batteries. JOM. 2022;74:4654–4663. doi:10.1007/s11837-022-05512-9
  • Lee JS, Park YJ. Comparison of LiTaO3 and LiNbO3 surface layers prepared by post- and precursor-based coating methods for Ni-rich cathodes of All-solid-state batteries. ACS Appl Mater Interfaces. 2021;13(32):38333–38345. doi:10.1021/acsami.1c10294
  • Walther F, Strauss F, Wu X. The working principle of a Li2CO3/LiNbO3 coating on NCM for thiophosphate-based all-solid-state batteries. Chem Mater. 2021;33(6):2110–2125. doi:10.1021/acs.chemmater.0c04660
  • Wang Y, Liu BN, Zhou G. Improved electrochemical performance of Li(Ni0.6Co0.2Mn0.2)O2 at high charging cut-off voltage with Li1.4Al0.4Ti1.6(PO4)3 surface coating. Chinese Phys B. 2019;28(6):068202. doi:10.1088/1674-1056/28/6/068202
  • Deng YF, Zhao SX, Xu YH, et al. Effect of temperature of Li2O–Al2O3–TiO2–P2O5 solid-state electrolyte coating process on the performance of LiNi0.5Mn1.5O4 cathode materials. J Power Sources. 2015;296:261–267. doi:10.1016/j.jpowsour.2015.07.017
  • Qiu J, Liu X, Chen R, et al. Enabling stable cycling of 4.2 V high-voltage All-solid-state batteries with PEO-based solid electrolyte. Adv Funct Mater. 2020;30:1909392. doi:10.1002/adfm.201909392
  • Nie K, Wang X, Qiu J, et al. Increasing poly(ethylene oxide) stability to 4.5 V by surface coating of the cathode. ACS Energy Lett. 2020;5(3):826–832. doi:10.1021/acsenergylett.9b02739
  • Kobylianska S, Demchuk D, Khomenko V, et al. Surface modification of the LiNi0.5Co0.2Mn0.3O2 cathode by a protective interface layer of Li1.3Ti1.7Al0.3(PO4)3. J Electrochem Soc. 2019;166(10):A1920–A1925. doi:10.1149/2.0701908jes
  • Wang Y, Zhang Q, Xue ZC, et al. An In situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances. Adv Energy Mater. 2020;10(28):2001413. doi:10.1002/aenm.202001413
  • Choi JW, Lee JW. Improved electrochemical properties of Li(Ni0.6Mn0.2Co0.2)O2 by surface coating with Li1.3Al0.3Ti1.7(PO4)3. J Power Sources. 2016;307:63–68. doi:10.1016/j.jpowsour.2015.12.055
  • Kim MY, Song YW, Lim J, et al. LATP-coated NCM-811 for high-temperature operation of all-solid lithium battery. Mater Chem Phys. 2022;290:126644. doi:10.1016/j.matchemphys.2022.126644
  • Qu X, Yu Z, Ruan D, et al. Enhanced electrochemical performance of Ni-rich cathode materials with Li1.3Al0.3Ti1.7(PO4)3 coating. ACS Sust Chem Eng. 2020;8(15):5819–5830. doi:10.1021/acssuschemeng.9b05539
  • Yun JH, Won ES, Shin HS, et al. Efficient and robust lithium metal electrodes enabled by synergistic surface activation–passivation of copper frameworks. J Mater Chem A. 2019;7(40):23208–23215. doi:10.1039/C9TA08779F
  • Yu S, Mertens A, Gao X. Influence of microstructure and AlPO4 secondary-phase on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte. Funct Mater Lett. 2016;9(5):1650066. doi:10.1142/S1793604716500661
  • Gunduz DC, Schierholz R, Yu S, et al. Combined quantitative microscopy on the microstructure and phase evolution in Li1.3Al0.3Ti1.7(PO4)3 ceramics. J Adv Ceram. 2020;9(2):149–161. doi:10.1007/s40145-019-0354-0
  • Davaasuren B, Tietz F. Impact of sintering temperature on phase formation, microstructure, crystallinity and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3. Solid State Ionics. 2019;338:144–152. doi:10.1016/j.ssi.2019.05.016
  • Soman S, Iwai Y, Kawamura J, et al. Crystalline phase content and ionic conductivity correlation in LATP glass–ceramic. J Solid State Electrochem. 2012;16:1761–1766. doi:10.1007/s10008-011-1592-4
  • Zhang H, Jia X, Yan Y, et al. The effect of the concentration of citric acid and pH values on the preparation of MgAl2O4 ultrafine powder by citrate sol–gel process. Mater Res Bull. 2005;39:839–850.
  • Wiecinska P. Thermal degradation of organic additives used in colloidal shaping of ceramics investigated by the coupled DTA/TG/MS analysis. J Therm Anal Calorim. 2016;123:1419–1430. doi:10.1007/s10973-015-5075-1
  • Lin Z, Liu S, Sun X, et al. The effects of citric acid on the synthesis and performance of silver–tin oxide electrical contact materials. J Alloys Compoun. 2014;588:30–35. doi:10.1016/j.jallcom.2013.10.222
  • Wu Z, Zhou W, Jin W, et al. Effect of pH on synthesis and properties of perovskite oxide via a citrate process. AIChE J. 2006;52(2):769–776. doi:10.1002/aic.10664

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.