75
Views
0
CrossRef citations to date
0
Altmetric
Articles

Global Patterns of Antioxidant-Rich Food Crops Based on Geographical Origins

Pages 947-957 | Received 18 Mar 2022, Accepted 23 Dec 2022, Published online: 05 Jul 2023

Literature Cited

  • Akerström, A., L. Jaakola, U. Bång, and A. Jäderlund. 2010. Effects of latitude-related factors and geographical origin on anthocyanidin concentrations in fruits of Vaccinium myrtillus L. (bilberries). Journal of Agricultural and Food Chemistry 58 (22):11939–45. doi: 10.1021/jf102407n.
  • Alhaithloul, H. A., F. H. Galal, and A. M. Seufi. 2021. Effect of extreme temperature changes on phenolic, flavonoid contents and antioxidant activity of tomato seedlings (Solanum lycopersicum L.). PeerJ 9:e11193. doi: 10.7717/peerj.11193.
  • Arya, S. S., A. R. Salve, and S. Chauhan. 2016. Peanuts as functional food: A review. Journal of Food Science and Technology 53 (1):31–41. doi: 10.1007/s13197-015-2007-9.
  • Baroni, L., A. R. Sarni, and C. Zuliani. 2021. Plant foods rich in antioxidants and human cognition: A systematic review. Antioxidants 10 (5):714. doi: 10.3390/antiox10050714.
  • Bhuvaneswari, S., S. Gopala Krishnan, H. Bollinedi, S. Saha, R. K. Ellur, K. K. Vinod, I. M. Singh, N. Prakash, P. K. Bhowmick, M. Nagarajan, et al. 2020. Genetic architecture and anthocyanin profiling of aromatic rice from Manipur reveals divergence of Chakhao landraces. Frontiers in Genetics 11:570731. doi: 10.3389/fgene.2020.570731.
  • Billingsley, H. E., and S. Carbone. 2018. The antioxidant potential of the Mediterranean diet in patients at high cardiovascular risk: An in-depth review of the PREDIMED. Nutrition & Diabetes 8 (1):13. doi: 10.1038/s41387-018-0025-1.
  • Bistgani, Z. E., S. A. Siadat, A. Bakhshandeh, A. G. Pirbalouti, M. Hashemi, F. Maggi, and M. R. Morshedloo. 2018. Application of combined fertilizers improves biomass, essential oil yield, aroma profile, and antioxidant properties of Thymus daenensis Celak. Industrial Crops and Products 121:434–40. doi: 10.1016/j.indcrop.2018.05.048.
  • Buckley, Y. M., and J. Catford. 2016. Does the biogeographic origin of species matter? Ecological effects of native and non‐native species and the use of origin to guide management. Journal of Ecology 104 (1):4–17. doi: 10.1111/1365-2745.12501.
  • Cádiz-Gurrea, M., J. Lozano-Sanchez, M. Contreras-Gámez, L. Legeai-Mallet, S. Fernández-Arroyo, and A. Segura-Carretero. 2014. Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract. Journal of Functional Foods 10:485–98. doi: 10.1016/j.jff.2014.07.016.
  • Carlsen, M. H., B. L. Halvorsen, K. Holte, S. K. Bøhn, S. Dragland, L. Sampson, C. Willey, H. Senoo, Y. Umezono, C. Sanada, et al. 2010. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutrition Journal 9:3. doi: 10.1186/1475-2891-9-3.
  • Chen, Y. H., L. R. Shapiro, B. Benrey, and A. Cibrián-Jaramillo. 2017. Back to the origin: In situ studies are needed to understand selection during crop diversification. Frontiers in Ecology and Evolution 5:125. doi: 10.3389/fevo.2017.00125.
  • Coley, P. D., and J. A. Barone. 1996. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics 27 (1):305–35. doi: 10.1146/annurev.ecolsys.27.1.305.
  • Cruz-Crespo, E., M. T. Sumaya-Martinez, A. Can-Chulim, J. Pineda-Pineda, R. Bugarin-Montoya, and G. Aguilar-Benitez. 2015. Quality, bioactive compounds, and antioxidant activity of serrano chili peppers cultivated in volcanic rock-vermicompost and nutrient solutions. Ciencia e Investigación Agragia 42:375–84.
  • Cunningham, E. 2013. What has happened to the ORAC database? Journal of the Academy of Nutrition and Dietetics 113 (5):740. doi: 10.1016/j.jand.2013.03.007.
  • Dar, N. A., M. A. Mir, J. I. Mir, S. Mansoor, W. Showkat, T. J. Parihar, S. A. U. Haq, S. H. Wani, G. Zaffar, and K. Z. Masoodi. 2022. MYB-6 and LDOX-1 regulated accretion of anthocyanin response to cold stress in purple black carrot (Daucus carota L.). Molecular Biology Reports 49 (6):5353–64. doi: 10.1007/s11033-021-07077-3.
  • Deighton, N., R. Brennan, C. Finn, and H. V. Davies. 2000. Antioxidant properties of domesticated and wild Rubus species. Journal of the Science of Food and Agriculture 80 (9):1307–13. doi: 10.1002/1097-0010(200007)80:9<1307::AID-JSFA638>3.0.CO;2-P.
  • Dreher, M. L., and A. J. Davenport. 2013. Hass avocado composition and potential health effects. Critical Reviews in Food Science and Nutrition 53 (7):738–50. doi: 10.1080/10408398.2011.556759.
  • El-Maati, M. F. A., S. A. Mahgoub, S. M. Labib, A. M. Al-Gaby, and M. F. Ramadan. 2016. Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. European Journal of Integrative Medicine 8 (4):494–504. doi: 10.1016/j.eujim.2016.02.006.
  • Farouk, S., and M. M. Omar. 2020. Sweet basil growth, physiological and ultrastructural modification, and oxidative defense system under water deficit and silicon forms treatment. Journal of Plant Growth Regulation 39 (3):1307–31. doi: 10.1007/s00344-020-10071-x.
  • Fernández-Marín, B., R. Milla, N. Martín-Robles, E. Arc, I. Kranner, J. M. Becerril, and J. I. García-Plazaola. 2014. Side-effects of domestication: Cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC Plant Biology 14 (1):1–11. doi: 10.1186/s12870-014-0385-1.
  • Garcia, C., and C. N. Blesso. 2021. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radical Biology & Medicine 172:152–66. doi: 10.1016/j.freeradbiomed.2021.05.040.
  • Gilligan, I. 2011. Agriculture in aboriginal Australia: Why not? Bulletin of the Indo-Pacific Prehistory Association 30:145–56. doi: 10.7152/bippa.v30i0.9978.
  • Goff, S. A., and H. J. Klee. 2006. Plant volatile compounds: Sensory cues for health and nutritional value? Science 311 (5762):815–19. doi: 10.1126/science.1112614.
  • González-Villagra, J., A. Rodrigues-Salvador, A. Nunes-Nesi, J. D. Cohen, and M. M. Reyes-Díaz. 2018. Age-related mechanism and its relationship with secondary metabolism and abscisic acid in Aristotelia chilensis plants subjected to drought stress. Plant Physiology and Biochemistry: PPB 124:136–45. doi: 10.1016/j.plaphy.2018.01.010.
  • Grosso, G. 2018. Effects of polyphenol-rich foods on human health. Nutrients 10 (8):1089. doi: 10.3390/nu10081089.
  • Hardman, W. E. 2014. Diet components can suppress inflammation and reduce cancer risk. Nutrition Research and Practice 8 (3):233–40. doi: 10.4162/nrp.2014.8.3.233.
  • Haytowitz, D. B., and S. Bhagwat. 2010. USDA database for the oxygen radical absorbance capacity (ORAC) of selected foods, release 2. Washington, DC: U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Center, Nutrient Data Laboratory.
  • Herrera, M. D., M. Servín-Palestina, M. Reveles-Hernández, and J. A. Zegbe. 2021. Garlic cloves (Allium sativum L.) conditioned at low temperatures and planting dates enhance the polyphenolic content of garlic cataphylls. Journal of Applied Research on Medicinal and Aromatic Plants 25:100316. doi: 10.1016/j.jarmap.2021.100316.
  • Higbee, J., P. Solverson, M. Zhu, and F. Carbonero. 2022. The emerging role of dark berry polyphenols in human health and nutrition. Food Frontiers 3 (1):3–27. doi: 10.1002/fft2.128.
  • Hurtado-Barroso, S., P. Quifer-Rada, J. F. Rinaldi de Alvarenga, S. Pérez-Fernández, A. Tresserra-Rimbau, and R. M. Lamuela-Raventos. 2018. Changing to a low-polyphenol diet alters vascular biomarkers in healthy men after only two weeks. Nutrients 10 (11):1766. doi: 10.3390/nu10111766.
  • Ivey, K. L., M. K. Jensen, J. M. Hodgson, A. H. Eliassen, A. Cassidy, and E. B. Rimm. 2017. Association of flavonoid-rich foods and flavonoids with risk of all-cause mortality. The British Journal of Nutrition 117 (10):1470–77. doi: 10.1017/S0007114517001325.
  • Jansen, M. A., A. Ač, K. Klem, and O. Urban. 2022. A meta‐analysis of the interactive effects of UV and drought on plants. Plant, Cell & Environment 45 (1):41–54. doi: 10.1111/pce.14221.
  • Josuttis, M., C. Carlen, P. Crespo, R. Nestby, T. Toldam-Andersen, H. Dietrich, and E. Krüger. 2012. A comparison of bioactive compounds of strawberry fruit from Europe affected by genotype and latitude. Journal of Berry Research 2 (2):73–95. doi: 10.3233/JBR-2012-029.
  • Khoury, C. K., H. A. Achicanoy, A. D. Bjorkman, C. Navarro-Racines, L. Guarino, X. Flores-Palacios, J. M. M. Engels, J. H. Wiersema, H. Dempewolf, S. Sotelo, et al. 2016. Origins of food crops connect countries worldwide. Proceedings of the Royal Society B: Biological Sciences 283 (1832):20160792. doi: 10.1098/rspb.2016.0792.
  • Kirakosyan, A., E. Seymour, P. B. Kaufman, S. Warber, S. Bolling, and S. C. Chang. 2003. Antioxidant capacity of polyphenolic extracts from leaves of Cataegus laevigata and Crataegus monogyna (hawthorn) subjected to drought and cold stress. Journal of Agricultural and Food Chemistry 51 (14):3973–76. doi: 10.1021/jf030096r.
  • Koç, E., C. İşlek, and A. S. Üstün. 2010. Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (Capsicum annuum L.) varieties. Gazi University Journal of Science 23:1–6.
  • Kontogianni, M. D., A. Vijayakumar, C. Rooney, R. L. Noad, K. M. Appleton, D. McCarthy, M. Donnelly, I. S. Young, M. C. McKinley, P. P. McKeown, et al. 2020. A high polyphenol diet improves psychological well-being: The polyphenol intervention trial (PPhIT). Nutrients 12 (8):2445. doi: 10.3390/nu12082445.
  • Kranner, I., and S. Birtić. 2005. A modulating role for antioxidants in desiccation tolerance. Integrative and Comparative Biology 45 (5):734–40. doi: 10.1093/icb/45.5.734.
  • Kranner, I., F. V. Minibayeva, R. P. Beckett, and C. E. Seal. 2010. What is stress? Concepts, definitions and applications in seed science. The New Phytologist 188 (3):655–73. doi: 10.1111/j.1469-8137.2010.03461.x.
  • Król, A., R. Amarowicz, and S. Weidner. 2015. The effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine (Vitis vinifera L.) leaves. Journal of Plant Physiology 189:97–104. doi: 10.1016/j.jplph.2015.10.002.
  • Król, K., M. Gantner, A. Tatarak, and E. Hallmann. 2020. The content of polyphenols in coffee beans as roasting, origin and storage effect. European Food Research and Technology 246 (1):33–39. doi: 10.1007/s00217-019-03388-9.
  • Kull, C. A., J. Tassin, S. Moreau, H. R. Ramiarantsoa, C. Blanc-Pamard, and S. M. Carrière. 2012. The introduced flora of Madagascar. Biological Invasions 14 (4):875–88. doi: 10.1007/s10530-011-0124-6.
  • Kumar, S., M. Yadav, A. Yadav, and J. Yadav. 2017. Impact of spatial and climatic conditions on phytochemical diversity and in vitro antioxidant activity of Indian Aloe vera (L.) Burm. f. South African Journal of Botany 111:50–59. doi: 10.1016/j.sajb.2017.03.012.
  • Kundu, A., S. Mishra, and J. Vadassery. 2018. Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum. Planta 248:981–97. doi: 10.1007/s00425-018-2953-3.
  • Lema, V. S. 2015. Non-domesticated cultivation in the Andes: Plant management and nurturing in the Argentine northwest. Vegetation History and Archaeobotany 24 (1):143–50. doi: 10.1007/s00334-014-0494-7.
  • Ljubej, V., E. Karalija, B. Salopek-Sondi, and D. Šamec. 2021. Effects of short-term exposure to low temperatures on proline, pigments, and phytochemicals level in kale (Brassica oleracea var. acephala). Horticulturae 7 (10):341. doi: 10.3390/horticulturae7100341.
  • Maria Cova, A., L. Crascì, A. Pánico, A. Catalfo, and G. De Guidi. 2015. Antioxidant capability and phytochemicals content of Sicilian prickly fruits. International Journal of Food Sciences and Nutrition 66 (8):881–86. doi: 10.3109/09637486.2015.1088938.
  • Marone, D., A. M. Mastrangelo, G. M. Borrelli, A. Mores, G. Laidò, M. A. Russo, and D. B. M. Ficco. 2022. Specialized metabolites: Physiological and biochemical role in stress resistance, strategies to improve their accumulation, and new applications in crop breeding and management. Plant Physiology and Biochemistry: PPB 172:48–55. doi: 10.1016/j.plaphy.2021.12.037.
  • Martins, N., L. Barros, and I. C. Ferreira. 2016. In vivo antioxidant activity of phenolic compounds: Facts and gaps. Trends in Food Science & Technology 48:1–12. doi: 10.1016/j.tifs.2015.11.008.
  • Meyer, R. S., A. E. DuVal, and H. R. Jensen. 2012. Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops. The New Phytologist 196 (1):29–48. doi: 10.1111/j.1469-8137.2012.04253.x.
  • Milivojević, J., V. Maksimović, M. Nikolić, J. Bogdanović, R. Maletić, and D. Milatović. 2011. Chemical and antioxidant properties of cultivated and wild Fragaria and Rubus berries. Journal of Food Quality 34 (1):1–9. doi: 10.1111/j.1745-4557.2010.00360.x.
  • Pánico, A., F. Garufi, S. Nitto, R. Di Mauro, R. Longhitano, G. Magrì, A. Catalfo, M. Serrentino, and G. De Guidi. 2009. Antioxidant activity and phenolic content of strawberry genotypes from Fragaria x ananassa. Pharmaceutical Biology 47 (3):203–08. doi: 10.1080/13880200802462337.
  • Peñalvo, J. L., H. Adlercreutz, M. Uehara, A. Ristimaki, and S. Watanabe. 2008. Lignan content of selected foods from Japan. Journal of Agricultural and Food Chemistry 56 (2):401–09. doi: 10.1021/jf072695u.
  • Pérez-Balladares, D., M. Castañeda-Terán, M. G. Granda-Albuja, E. Tejera, G. Iturralde, S. Granda-Albuja, T. Jaramillo-Vivanco, F. Giampieri, M. Battino, and J. M. Alvarez-Suarez. 2019. Chemical composition and antioxidant activity of the main fruits, tubers and legumes traditionally consumed in the Andean regions of Ecuador as a source of health-promoting compounds. Plant Foods for Human Nutrition 74 (3):350–57. doi: 10.1007/s11130-019-00744-8.
  • Pérez-Jiménez, J., V. Neveu, F. Vos, and A. Scalbert. 2010. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. European Journal of Clinical Nutrition 64 (Suppl. 3):S112–S120. doi: 10.1038/ejcn.2010.221.
  • Petridis, A., I. Therios, G. Samouris, S. Koundouras, and A. Giannakoula. 2012. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiology and Biochemistry: PPB 60:1–11. doi: 10.1016/j.plaphy.2012.07.014.
  • Pfukwa, T. M., O. C. Chikwanha, C. L. Katiyatiya, O. A. Fawole, M. Manley, and C. Mapiye. 2020. Southern African indigenous fruits and their byproducts: Prospects as food antioxidants. Journal of Functional Foods 75:104220. doi: 10.1016/j.jff.2020.104220.
  • Piao, X. M., E. K. Jang, J. W. Chung, G. A. Lee, H. S. Lee, J. S. Sung, Y. A. Jeon, J. R. Lee, Y. G. Kim, and S. Y. Lee. 2013. Variation in antioxidant activity and polyphenol content in tomato stems and leaves. Plant Breeding and Biotechnology 1 (4):366–73. doi: 10.9787/PBB.2013.1.4.366.
  • Piperno, D. R. 2011. The origins of plant cultivation and domestication in the New World tropics: Patterns, process, and new developments. Current Anthropology 52 (Suppl. 4):S453–S470. doi: 10.1086/659998.
  • Pisoschi, A. M., and A. Pop. 2015. The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry 97:55–74. doi: 10.1016/j.ejmech.2015.04.040.
  • Ramos-Escudero, F., S. Casimiro-Gonzales, Á. Fernández-Prior, K. C. Chávez, J. Gómez-Mendoza, L. de la Fuente-Carmelino, and A. M. Muñoz. 2021. Colour, fatty acids, bioactive compounds, and total antioxidant capacity in commercial cocoa beans (Theobroma cacao L.). LWT 147:111629. doi: 10.1016/j.lwt.2021.111629.
  • Sarker, U., and S. Oba. 2018. Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of amaranthus leafy vegetable. BMC Plant Biology 18 (1):258. doi: 10.1186/s12870-018-1484-1.
  • Scalbert, A., C. Manach, C. Morand, C. Rémésy, and L. Jiménez. 2005. Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition 45 (4):287–306. doi: 10.1080/1040869059096.
  • Shivappa, N., J. Godos, J. R. Hébert, M. D. Wirth, G. Piuri, A. F. Speciani, and G. Grosso. 2018. Dietary inflammatory index and cardiovascular risk and mortality—A meta-analysis. Nutrients 10 (2):200. doi: 10.3390/nu10020200.
  • Soengas, P., V. M. Rodríguez, P. Velasco, and M. E. Cartea. 2018. Effect of temperature stress on antioxidant defenses in Brassica oleracea. ACS Omega 3 (5):5237–43. doi: 10.1021/acsomega.8b00242.
  • Speisky, H., C. López-Alarcón, M. Gómez, J. Fuentes, and C. Sandoval-Acuña. 2012. First web-based database on total phenolics and oxygen radical absorbance capacity (ORAC) of fruits produced and consumed within the South Andes region of South America. Journal of Agricultural and Food Chemistry 60 (36):8851–59. doi: 10.1021/jf205167k.
  • Spengler, R. N., F. Maksudov, E. Bullion, A. Merkle, T. Hermes, and M. Frachetti. 2018. Arboreal crops on the medieval Silk Road: Archaeobotanical studies at Tashbulak. PloS One 13 (8):e0201409. doi: 10.1371/journal.pone.0201409.
  • Terzo, S., S. Baldassano, G. F. Caldara, V. Ferrantelli, G. Lo Dico, F. Mulè, and A. Amato. 2019. Health benefits of pistachios consumption. Natural Product Research 33 (5):715–26. doi: 10.1080/14786419.2017.1408093.
  • Thomai, T., E. Sfakiotakis, G. Diamantidis, and M. Vasilakakis. 1998. Effects of low preharvest temperature on scald susceptibility and biochemical changes in “Granny Smith” apple peel. Scientia Horticulturae 76 (1–2):1–15. doi: 10.1016/S0304-4238(98)00133-2.
  • Trucchi, E., A. Benazzo, M. Lari, A. Iob, S. Vai, L. Nanni, E. Bellucci, E. Bitocchi, F. Raffini, C. Xu, et al. 2021. Ancient genomes reveal early Andean farmers selected common beans while preserving diversity. Nature Plants 7 (2):123–28. doi: 10.1038/s41477-021-00848-7.
  • Valls-Pedret, C., R. M. Lamuela-Raventós, A. Medina-Remón, M. Quintana, D. Corella, X. Pintó, M. A. Martínez-González, R. Estruch, and E. Ros. 2012. Polyphenol-rich foods in the Mediterranean diet are associated with better cognitive function in elderly subjects at high cardiovascular risk. Journal of Alzheimer’s Disease 29 (4):773–82. doi: 10.3233/JAD-2012-111799.
  • Vyas, P., N. H. Curran, A. U. Igamberdiev, and S. C. Debnath. 2015. Antioxidant properties of lingonberry (Vaccinium vitis-idaea L.) leaves within a set of wild clones and cultivars. Canadian Journal of Plant Science 95 (4):663–69. doi: 10.4141/cjps-2014-400.
  • Wang, X., M. Wang, J. Cao, Y. Wu, J. Xiao, and Q. Wang. 2017. Analysis of flavonoids and antioxidants in extracts of ferns from Tianmu Mountain in Zhejiang Province (China). Industrial Crops and Products 97:137–45. doi: 10.1016/j.indcrop.2016.12.013.
  • War, A. R., M. G. Paulraj, T. Ahmad, A. A. Buhroo, B. Hussain, S. Ignacimuthu, and H. C. Sharma. 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior 7 (10):1306–20. doi: 10.4161/psb.21663.
  • Xie, L., and B. W. Bolling. 2014. Characterisation of stilbenes in California almonds (Prunus dulcis) by UHPLC–MS. Food Chemistry 148:300–06. doi: 10.1016/j.foodchem.2013.10.057.
  • Zorzi, M., F. Gai, C. Medana, R. Aigotti, and P. G. Peiretti. 2020. Identification of polyphenolic compounds in edible wild fruits grown in the northwest of Italy by means of HPLC-DAD-ESI HRMS. Plant Foods for Human Nutrition 75 (3):420–26. doi: 10.1007/s11130-020-00830-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.