177
Views
4
CrossRef citations to date
0
Altmetric
Regular Articles

Physico-chemical and antibacterial properties of gold nanoparticles synthesized using Avicennia marina seeds extract

ORCID Icon, &

REFERENCES

  • Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R. & Sastry, M. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces 28: 313–318. doi: 10.1016/S0927-7765(02)00174-1
  • Ahmad, N., Sharma, S., Singh, V., Shamsi, S., Fatma, A. & Mehta, B. 2011. Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnology Research International 28(4): 313–318.
  • Alex, S. & Tiwari, A. 2015. Functionalized gold nanoparticles: synthesis, properties and applications: A review. Journal of Nanoscience and Nanotechnology 15: 1869–1894. doi: 10.1166/jnn.2015.9718
  • Ali, D.M., Sasikala, M., Gunasekaran, M. & Thajuddin, N. 2011. Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Digest Journal of Nanomaterials and Biostructures 6(2): 385–390.
  • Anitha, P. & Sakthivel, P. 2015. Microwave assisted synthesis and characterization of silver nanoparticles using Tridax procumbens and its anti-inflammatory activity against human blood cells. Journal of Nanomaterials & Molecular Nanotechnology 5:4(5): 44. doi: 10.4172/2324-8777.1000170
  • Annamalai, A., Christina, V.L.P., Sudha, D., Kalpana, M. & Lakshmi, P.T.V. 2013. Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids and Surfaces B: Biointerfaces 108: 60–65. doi: 10.1016/j.colsurfb.2013.02.012
  • Aromal, S.A., Vidhu, V.K. & Philip, D. 2012. Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 85: 99–104. doi: 10.1016/j.saa.2011.09.035
  • Arvizo, R.R., Bhattacharyya, S., Kudgus, R.A., Giri, K., Bhattacharya, R. & Mukherjee, P. 2012. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chemical Society Reviews 41: 2943–2970. doi: 10.1039/c2cs15355f
  • Balakrishnan, S., Srinivasan, M. & Mohanraj, J. 2016. Biosynthesis of silver nanoparticles from mangrove plant (Avicennia marina) extract and their potential mosquito larvicidal property. Journal of Parasitic Diseases: Official Organ of the Indian Society for Parasitology 40: 991–996. doi: 10.1007/s12639-014-0621-5
  • Banerjee, J. & Narendhirakannan, R.T. 2011. Biosynthesis of silver nanoparticles from Syzygium cumini (L.) seed extract and evaluation of their in vitro antioxidant activities. Digest Journal of Nanomaterials and Biostructures 6(3): 961–968.
  • Baptista, P.V., McCusker, M.P., Carvalho, A., Ferreira, D.A., Mohan, N.M., Martins, M. & Fernandes, A.R., 2018. Nano-strategies to fight multidrug resistant bacteria— “A battle of the titans”. Frontiers in Microbiology 9. doi: 10.3389/fmicb.2018.01441
  • Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., De, S.P. & Misra, A. 2009. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects 348(1–3): 212–216. doi: 10.1016/j.colsurfa.2009.07.021
  • Bhimba, B. V., Franco, D. A. D., Mathew, J. M., Jose, G. M., Joel, E. L. & Thangaraj, M. 2012. Anticancer and antimicrobial activity of mangrove derived fungi Hypocrea lixii VB1. Chinese Journal of Natural Medicines 10: 77–80. doi: 10.1016/S1875-5364(12)60017-X
  • Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A. & Sastry, M. 2006. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress 22: 577–583. doi: 10.1021/bp0501423
  • Cho, K.-H., Park, J.-E., Osaka, T. & Park, S.-G. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta 51: 956–960. doi: 10.1016/j.electacta.2005.04.071
  • Fardin, K. & Young, M. 2015. Antifungal potential of Avicennia schaueriana Stapf & Leech. (Acanthaceae) against Cladosporium and Colletotrichum species. Letters in Applied Microbiology 61: 50–57. doi: 10.1111/lam.12423
  • Ghoreishi, S.M., Behpour, M. & Khayatkashani, M. 2011. Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry. Physica E: Low-dimensional Systems and Nanostructures 44: 97–104. doi: 10.1016/j.physe.2011.07.008
  • Gnanadesigan, M., Anand, M., Ravikumar, S., Maruthupandy, M., Vijayakumar, V., Selvam, S., Dhineshkumar, M. & Kumaraguru, A. 2011. Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pacific Journal of Tropical Medicine 4: 799–803. doi: 10.1016/S1995-7645(11)60197-1
  • Gnanadesigan, M., Anand, M., Ravikumar, S., Maruthupandy, M., Syed Ali, M., Vijayakumar, V. & Kumaraguru, A.K. 2012. Antibacterial potential of biosynthesized silver nanoparticles using Avicennia marina mangrove plant. Applied Nanoscience 2: 143–147. doi: 10.1007/s13204-011-0048-6
  • Gouda, S., Das, G., Sen, S.K., Thatoi, P., Patra, J.K. 2015. Mangroves, a potential source for green nanoparticle synthesis: a review. Indian Journal of Geo-Marine Sciences 44(5): 635–645.
  • Gröning, R., Breitkreutz, J., Baroth, V. & Müller, R. 2001. Nanoparticles in plant extracts–factors which influence the formation of nanoparticles in black tea infusions. Die Pharmazie 56: 790–792.
  • Huang, C., Lu, C.-K., Tu, M.-C., Chang, J.-H., Chen, Y.-J., Tu, Y.-H. & Huang, H.-C. 2016. Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model. Oncotarget 7: 35874–35893.
  • Huang, H. & Yang, X. 2004. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydrate Research 339: 2627–2631. doi: 10.1016/j.carres.2004.08.005
  • Jerushka, S. M., Suresh Babu Naidu, K., Karen, P., Sershen & Patrick, G. 2018. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Advances in Natural Sciences: Nanoscience and Nanotechnology 9: 015011.
  • Kannan, P. & John, S. A. 2008. Synthesis of mercaptothiadiazole-functionalized gold nanoparticles and their self-assembly on Au substrates. Nanotechnology 19: 085602. doi: 10.1088/0957-4484/19/8/085602
  • Karpel, R. L., da Silva Liberato, M., Campeiro, J. D., Bergeon, L., Szychowski, B., Butler, A., Marino, G., Cusic, J. F., de Oliveira, L. C. G., Oliveira, E. B., de Farias, M. A., Portugal, R. V., Alves, W. A., Daniel, M.-C. & Hayashi, M. A. F. 2018. Design and characterization of crotamine-functionalized gold nanoparticles. Colloids and Surfaces B: Biointerfaces 163: 1–8. doi: 10.1016/j.colsurfb.2017.12.013
  • Kumar, V. & Yadav, S. K. 2009. Plant-mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology & Biotechnology 84: 151–157. doi: 10.1002/jctb.2023
  • Malapermal, V., Botha, I., Krishna, S. B. N. & Mbatha, J. N. 2017. Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles. Saudi Journal of Biological Sciences 24: 1294–1305. doi: 10.1016/j.sjbs.2015.06.026
  • Moodley, J.S., Krishna, S.B.N., Pillay, K. & Govender, P. 2018. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Advances in Natural Sciences: Nanoscience and Nanotechnology 9: 015011.
  • Nabikhan, A., Kandasamy, K., Raj, A. & Alikunhi, N.M. 2010. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids and Surfaces B: Biointerfaces 79: 488–493. doi: 10.1016/j.colsurfb.2010.05.018
  • Narayanan, K.B. & Sakthivel, N. 2008. Coriander leaf mediated biosynthesis of gold nanoparticles. Materials Letters 62: 4588–4590. doi: 10.1016/j.matlet.2008.08.044
  • Nithya, K. & Kalyanasundharam, S. 2019. Effect of chemically synthesis compared to biosynthesized ZnO nanoparticles using aqueous extract of C. halicacabum and their antibacterial activity. OpenNano 4: 100024. doi: 10.1016/j.onano.2018.10.001
  • Paciotti, G.F., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R.E. & Tamarkin, L. 2004. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery 11: 169–183. doi: 10.1080/10717540490433895
  • Philip, D. 2011. Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 78: 327–331. doi: 10.1016/j.saa.2010.10.015
  • Rajan, A., Rajan, A.R. & Philip, D. 2017. Elettaria cardamomum seed mediated rapid synthesis of gold nanoparticles and its biological activities. OpenNano 2: 1–8. doi: 10.1016/j.onano.2016.11.002
  • Rajeshkumar, S., Malarkodi, C., Gnanajobitha, G., Paulkumar, K., Vanaja, M., Kannan, C. & Annadurai, G., 2013. Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. Journal of Nanostructure in Chemistry 3(1): 44. doi: 10.1186/2193-8865-3-44
  • Sigamoney, M., Shaik, S., Govender, P. & Krishna, S. 2016. African leafy vegetables as bio-factories for silver nanoparticles: a case study on Amaranthus dubius C Mart. Ex Thell. South African Journal of Botany 103: 230–240. doi: 10.1016/j.sajb.2015.08.022
  • Singh, A., Chaudhari, M. & Sastry, M. 2006. Construction of conductive multilayer films of biogenic triangular gold nanoparticles and their application in chemical vapour sensing. Nanotechnology 17: 2399. doi: 10.1088/0957-4484/17/9/055
  • Sneha, K., Sathishkumar, M., Lee, S.Y., Bae, M.A. & Yun, Y.S. 2011. Biosynthesis of Au nanoparticles using cumin seed powder extract. Journal of Nanoscience and Nanotechnology 11(2): 1811–1814. doi: 10.1166/jnn.2011.3414
  • Song, J.Y. & Kim, B.S. 2008. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering 32: 79. doi: 10.1007/s00449-008-0224-6
  • Thakkar, K.N., Mhatre, S.S. & Parikh, R.Y. 2010. Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 6: 257–262. doi: 10.1016/j.nano.2009.07.002
  • Vallinova, P. 1999. Methods for determining bactericidal activity of antimicrobial agents; approved guideline. NCCLS document M26-A. National Committee for Clinical Laboratory Standards, Villanova, PA.
  • Verma, A. & Mehata, M. S. 2016. Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. Journal of Radiation Research and Applied Sciences 9: 109–115. doi: 10.1016/j.jrras.2015.11.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.