362
Views
15
CrossRef citations to date
0
Altmetric
Original Article

CCR5 expression in inflammatory bowel disease and its correlation with inflammatory cells and β-arrestin2 expression

, , , , &
Pages 551-557 | Received 11 Oct 2016, Accepted 08 Jan 2017, Published online: 31 Jan 2017

References

  • Ajuebor MN, Hogaboam CM, Kunkel SL, et al. The chemokine RANTES is a crucial mediator of the progression from acute to chronic colitis in the rat. J Immunol. 2001;166:552–558.
  • Kucuk C, Sozuer E, Gursoy S, et al. Treatment with Met-RANTES decreases bacterial translocation in experimental colitis. Am J Surg. 2006;191:77–83.
  • Tokuyama H, Ueha S, Kurachi M, et al. The simultaneous blockade of chemokine receptors CCR2, CCR5 and CXCR3 by a non-peptide chemokine receptor antagonist protects mice from dextran sodium sulfate-mediated colitis. Int Immunol. 2005;17:1023–1034.
  • Mellado M, Rodríguez-Frade JM, Vila-Coro AJ, et al. Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J. 2001;20:2497–2507.
  • Sasaki S, Baba T, Shinagawa K, et al. Crucial involvement of the CCL3-CCR5 axis-mediated fibroblast accumulation in colitis-associated carcinogenesis in mice. Int J Cancer. 2014;135:1–10.
  • Ganju RK, Dutt P, Wu L, et al. Beta-chemokine receptor CCR5 signals via the novel tyrosine kinase RAFTK. Blood. 1998;91:791–797.
  • Chuang JY, Yang WH, Chen HT, et al. CCL5/CCR5 axis promotes the motility of human oral cancer cells. J Cell Physiol. 2009;220:418–426.
  • Wong M, Uddin S, Majchrzak B, et al. RANTES activates Jak2 and Jak3 to regulate engagement of multiple signaling pathways in T Cells. J Biol Chem. 2001;276:11427–11431.
  • Fromowitz FB, Viola MV, Chao S, et al. Ras p21 expression in the progression of breast cancer. Hum Pathol. 1987;18:1268–1275.
  • Zhong Y-Q, Ye X-Y. The contemporary medical treatment of IBD. Chin J Clin. 2013;7:7354–7357.
  • Seo M, Okada M, Yao T, et al. An index of disease activity in patients with ulcerative colitis. Am J Gastroenterol. 1992;87:971–976.
  • Best WR, Becktel JM, Singleton JW Jr., et al. Development of a Crohn's disease activity index. National Cooperative Crohn's Disease Study. Gastroenterology. 1976;70:439–444.
  • Truelove SC, Richards WCD. Biopsy studies in ulcerative colitis. Br Med J. 1956;1:1315–1318.
  • Zhong Y-Q, Huang H-R, Zeng Z-Y, et al. The application of eosinophils classification in evaluation of severity in active ulcerative colitis. Chin J Dig. 2004;24:559–560.
  • Van Damme N, De Keyser F, Demetter P, et al. The proportion of Th1 cells, which prevail in gut mucosa, is decreased in inflammatory bowel syndrome. Clin Exp Immunol. 2001;125:383–390.
  • Macdonald T, Monteleone G, Pender S. Recent developments in the immunology of inflammatory bowel disease. Scand J Immunol. 2000;51:2–9.
  • Sallusto F, Lanzavecchia A, Mackay CR. Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today. 1998;19:568–574.
  • Andres PG, Beck PL, Mizoguchi E, et al. Mice with a selective deletion of the CC chemokine receptors 5 or 2 are protected from dextran sodium sulfate-mediated colitis: lack of CC chemokine receptor 5 expression results in a NK1.1+ lymphocyte-associated Th2-type immune response in the intestine. J Immunol. 2000;164:6303–6312.
  • Oki M, Ohtani H, Kinouchi Y, et al. Accumulation of CCR5+ T cells around RANTES + granulomas in Crohn's disease: a pivotal site of Th1-shifted immune response?. Lab Invest. 2005;85:137–145.
  • Matsuzaki K, Hokari R, Kato S, et al. Differential expression of CCR5 and CRTH2 on infiltrated cells in colonic mucosa of patients with ulcerative colitis. J Gastroenterol Hepatol. 2003;18:1081–1088.
  • Villablanca EJ, Cassani B, Andrian UH, et al. Blocking lymphocyte localization to the gastrointestinal mucosa as a therapeutic strategy for IBD. Gastroenterology. 2011;140:1776–1784.
  • Kang SG, Piniecki RJ, Hogenesch H, et al. Identification of a chemokine network that recruits FoxP3(+) regulatory T cells into chronically inflamed intestine. Gastroenterology. 2007;132:966–981.
  • Futosi K, Fodor S, Mócsa A. Reprint of neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol. 2013;17:1185–1197.
  • Farooq SM, Stillie R, Svensson M. Therapeutic effect of blocking CXCR2 on neutrophil recruitment and dextran sodium sulfate-induced colitis. J Pharmacol Exp Ther. 2009;329:123–129.
  • Buanne P, Di Carlo E, Caputi L, et al. Crucial pathophysiological role of CXCR2 in experimental ulcerative colitis in mice. J Leukoc Biol. 2007;82:1239–1246.
  • Carvalho AT, Elia CC, de Souza HS, et al. Immunohistochemical study of intestinal eosinophils in inflammatory bowel disease. J Clin Gastroenterol. 2003;36:120–125.
  • Stasikowska-Kanicka O, Danilewicz M, Głowacka A, et al. Mast cells and eosinophils are involved in activation of ulcerative colitis. Adv Med Sci. 2012;57:230–236.
  • Wedemeyer J, Vosskuhl K. Role of gastrointestinal eosinophils in inflammatory bowel disease and intestinal tumours. Best Pract Res Clin Gastroenterol. 2008;22:537–549.
  • Lampinen M, Ronnblom A, Amin K, et al. Eosinophil granulocytes are activated during the remission phase of ulcerative colitis. Gut. 2005;54:1714–1720.
  • Jeziorska M, Haboubi N, Schofield P, et al. Distribution and activation of eosinophils in inflammatory bowel disease using an improved immunohistochemical technique. J Pathol. 2001;194:484–492.
  • Beil WJ, McEuen AR, Schulz M, et al. Selective alterations in mast cell subsets and eosinophil infiltration in two complementary types of intestinal inflammation: ascariasis and Crohn's disease. Pathobiology. 2002;70:303–313.
  • He SH. Key role of mast cells and their major secretory products in inflammatory bowel disease. World J Gastroenterol. 2004;10:309–318.
  • Kashiwase Y, Inamura H, Morioka J, et al. Quantitative analysis of mast cells in benign and malignant colonic lesions: immunohistochemical study on formalin-fixed, paraffin-embedded tissues. Allergol Immunopathol (Madr). 2008;36:271–276.
  • Andoh A, Deguchi Y, Inatomi O, et al. Immunohistochemical study of chymase-positive mast cells in inflammatory bowel disease. Oncol Rep. 2006;16:103–107.
  • Whalen EJ, Rajagopal S, Robert J, et al. Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol Med. 2011;17:126–139.
  • Hüttenrauch F, Pollok-Kopp B, Oppermann M. G protein-coupled receptor kinases promote phosphorylation and beta-arrestin-mediated internalization of CCR5 homo- and hetero-oligomers. J Biol Chem. 2005;280:37503–37515.
  • Lagane B, Ballet S, Planchenault T, et al. Mutation of the DRY motif reveals different structural requirements for the CC chemokine receptor 5-mediated signaling and receptor endocytosis. Mol Pharmacol. 2005;67:1966–1976.
  • DeWire SM, Ahn S, Lefkowitz RJ, et al. Beta-arrestins and cell signaling. Annu Rev Physiol. 2007;69:483–510.
  • Brown MD, Sacks DB. Protein scaffolds in MAP kinase signalling. Cell Signal. 2009;21:462–469.
  • Kendall RT, Luttrell LM. Diversity in arrestin function. Cell Mol Life Sci. 2009;66:2953–2973.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.