195
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Mast cells disrupt the duodenal mucosal integrity: Implications for the mechanisms of barrier dysfunction in functional dyspepsia

, , ORCID Icon, &
Pages 460-470 | Received 06 Jul 2022, Accepted 24 Oct 2022, Published online: 08 Nov 2022

References

  • Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev. 1997;77(4):1033–1079.
  • Wouters MM, Vicario M, Santos J. The role of mast cells in functional GI disorders. Gut. 2016;65(1):155–168.
  • Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2010;125(2):S73–S80.
  • Atiakshin D, Buchwalow I, Samoilova V, et al. Tryptase as a polyfunctional component of mast cells. Histochem Cell Biol. 2018;149(5):461–477.
  • Vanheel H, Vicario M, Vanuytsel T, et al. Impaired duodenal mucosal integrity and low-grade inflammation in functional dyspepsia. Gut. 2014;63(2):262–271.
  • Wauters L, Burns G, Ceulemans M, et al. Duodenal inflammation: an emerging target for functional dyspepsia? Expert Opin Ther Targets. 2020;24(6):511–523.
  • Wang X, Li X, Ge W, et al. Quantitative evaluation of duodenal eosinophils and mast cells in adult patients with functional dyspepsia. Ann Diagn Pathol. 2015;19(2):50–56.
  • Maher S, Brayden DJ, Feighery L, et al. Cracking the junction: update on the progress of gastrointestinal absorption enhancement in the delivery of poorly absorbed drugs. Crit Rev Ther Drug Carrier Syst. 2008;25(2):117–168.
  • Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol. 2004;286(6):C1213–1228.
  • Günzel D, Yu AS. Claudins and the modulation of tight junction permeability. Physiol Rev. 2013;93(2):525–569.
  • Taki M, Oshima T, Li M, et al. Duodenal low-grade inflammation and expression of tight junction proteins in functional dyspepsia. Neurogastroenterol Motil. 2019;31(10):e13576.
  • Du L, Shen J, Kim JJ, et al. Impact of gluten consumption in patients with functional dyspepsia: a case-control study. J Gastroenterol Hepatol. 2018;33(1):128–133.
  • Enck P, Azpiroz F, Boeckxstaens G, et al. Functional dyspepsia. Nat Rev Dis Primers. 2017;3:17081.
  • Ford AC, Mahadeva S, Carbone MF, et al. Functional dyspepsia. Lancet. 2020;396(10263):1689–1702.
  • Stanghellini V, Chan FK, Hasler WL, et al. Gastroduodenal disorders. Gastroenterology. 2016;150(6):1380–1392.
  • Burri E, Barba E, Huaman JW, et al. Mechanisms of postprandial abdominal bloating and distension in functional dyspepsia. Gut. 2014;63(3):395–400.
  • Barbara G, Feinle-Bisset C, Ghoshal UC, et al. The intestinal microenvironment and functional gastrointestinal disorders. Gastroenterology. 2016;150(6):1305–1318.e8.
  • Wauters L, Talley NJ, Walker MM, et al. Novel concepts in the pathophysiology and treatment of functional dyspepsia. Gut. 2020;69(3):591–600.
  • Talley NJ. What causes functional gastrointestinal disorders? A proposed disease model. Am J Gastroenterol. 2020;115(1):41–48.
  • Wilcz-Villega EM, McClean S, O'Sullivan MA. Mast cell tryptase reduces junctional adhesion molecule-A (JAM-A) expression in intestinal epithelial cells: implications for the mechanisms of barrier dysfunction in irritable bowel syndrome. Am J Gastroenterol. 2013;108(7):1140–1151.
  • Yamashita S, Yokoyama Y, Hashimoto T, et al. A novel in vitro co-culture model comprised of caco-2/RBL-2H3 cells to evaluate anti-allergic effects of food factors through the intestine. J Immunol Methods. 2016;435:1–6.
  • Sambuy Y, De Angelis I, Ranaldi G, et al. The caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on caco-2 cell functional characteristics. Cell Biol Toxicol. 2005;21(1):1–26.
  • Engle MJ, Goetz GS, Alpers DH. Caco-2 cells express a combination of colonocyte and enterocyte phenotypes. J. Cell. Physiol. 1998;174(3):362–369.
  • Wu L, Oshima T, Tomita T, et al. Serotonin disrupts esophageal mucosal integrity: an investigation using a stratified squamous epithelial model. J Gastroenterol. 2016;51(11):1040–1049.
  • Wu L, Oshima T, Li M, et al. Filaggrin and tight junction proteins are crucial for IL-13-mediated esophageal barrier dysfunction. Am J Physiol Gastrointest Liver Physiol. 2018;315(3):G341–g350.
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108.
  • Ji R, Wang P, Kou GJ, et al. Impaired gastric mucosal integrity identified by confocal endomicroscopy in Helicobacter pylori-negative functional dyspepsia. Neurogastroenterol Motil. 2020;32(1):e13719.
  • Vanheel H, Vicario M, Boesmans W, et al. Activation of eosinophils and mast cells in functional dyspepsia: an ultrastructural evaluation. Sci Rep. 2018;8(1):5383.
  • Komori K, Ihara E, Minoda Y, et al. The altered mucosal barrier function in the duodenum plays a role in the pathogenesis of functional dyspepsia. Dig Dis Sci. 2019;64(11):3228–3239.
  • Puthanmadhom Narayanan S, O’Brien DR, Sharma M, et al. Duodenal mucosal barrier in functional dyspepsia. Clin Gastroenterol Hepatol. 2022;20(5):1019–1028.e3.
  • Nojkov B, Zhou SY, Dolan RD, et al. Evidence of duodenal epithelial barrier impairment and increased pyroptosis in patients with functional dyspepsia on confocal laser endomicroscopy and "ex vivo" mucosa analysis. Am J Gastroenterol. 2020;115(11):1891–1901.
  • Barmeyer C, Erko I, Awad K, et al. Epithelial barrier dysfunction in lymphocytic colitis through cytokine-dependent internalization of claudin-5 and -8. J Gastroenterol. 2017;52(10):1090–1100.
  • Barmeyer C, Fromm M, Schulzke JD. Active and passive involvement of claudins in the pathophysiology of intestinal inflammatory diseases. Pflugers Arch. 2017;469(1):15–26.
  • Čužić S, Antolić M, Ognjenović A, et al. Claudins: beyond tight junctions in human IBD and murine models. Front Pharmacol. 2021;12:682614.
  • Rowart P, Wu J, Caplan MJ, et al. Implications of AMPK in the formation of epithelial tight junctions. Int J Mol Sci. 2018;19:2040.
  • Miller HR, Pemberton AD. Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology. 2002;105(4):375–390.
  • Lee JW, Park JH, Park DI, et al. Subjects with diarrhea-predominant IBS have increased rectal permeability responsive to tryptase. Dig Dis Sci. 2010;55(10):2922–2928.
  • Jacob C, Yang PC, Darmoul D, et al. Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and beta-arrestins. J Biol Chem. 2005;280(36):31936–31948.
  • Ossovskaya VS, Bunnett NW. Protease-activated receptors: contribution to physiology and disease. Physiol Rev. 2004;84(2):579–621.
  • DeFea KA, Zalevsky J, Thoma MS, et al. Beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol. 2000;148(6):1267–1281.
  • Fyfe M, Bergström M, Aspengren S, et al. PAR-2 activation in intestinal epithelial cells potentiates interleukin-1beta-induced chemokine secretion via MAP kinase signaling pathways. Cytokine. 2005;31(5):358–367.
  • Al-Sadi R, Guo S, Ye D, et al. TNF-α modulation of intestinal epithelial tight junction barrier is regulated by ERK1/2 activation of elk-1. Am J Pathol. 2013;183(6):1871–1884.
  • Zhou Q, Wang YW, Ni PF, et al. Effect of tryptase on mouse brain microvascular endothelial cells via protease-activated receptor 2. J Neuroinflamm. 2018;15(1):248.
  • Ocak U, Eser Ocak P, Huang L, et al. Inhibition of mast cell tryptase attenuates neuroinflammation via PAR-2/p38/NFκB pathway following asphyxial cardiac arrest in rats. J Neuroinflamm. 2020;17(1):144.
  • Song J, He Z, Yang M, et al. HepaticIschemia/reperfusion injuryinvolves functional tryptase/PAR-2 signaling in liver sinusoidal endothelial cell population. Int Immunopharmacol. 2021;100:108052.
  • Weiß F, Holthaus D, Kraft M, et al. Human duodenal organoid-derived monolayers serve as a suitable barrier model for duodenal tissue. Ann N Y Acad Sci. 2022;1515(1):155–167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.