219
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Using deep learning and explainable artificial intelligence to assess the severity of gastroesophageal reflux disease according to the Los Angeles Classification System

, , , , , & show all
Pages 596-604 | Received 13 Nov 2022, Accepted 23 Dec 2022, Published online: 09 Jan 2023

References

  • Gyawali CP, Kahrilas PJ, Savarino E, et al. Modern diagnosis of GERD: the Lyon consensus. Gut. 2018;67(7):1351–1362.
  • ASGE Standards of Practice Committee, et al. The role of endoscopy in the management of GERD. Gastrointest Endosc. 2015;81(6):1305–1310.
  • Genta RM, Spechler SJ, Kielhorn AF, et al. The Los Angeles and Savary–Miller systems for grading esophagitis: utilization and correlation with histology. Dis Esophagus. 2011;24(1):10–17.
  • Kuribayashi S, Hosaka H, Nakamura F, et al. The role of endoscopy in the management of gastroesophageal reflux disease. DEN Open. 2022;2(1):e86.
  • Liu L, Li S, Zhu K, et al. Relationship between esophageal motility and severity of gastroesophageal reflux disease according to the Los Angeles classification. Medicine. 2019;98(19):e15543.
  • Sugiura T, Iwakiri K, Kotoyori M, et al. Relationship between severity of reflux esophagitis according to the Los Angeles classification and esophageal motility. J Gastroenterol. 2001;36(4):226–230.
  • Ghoshal UC, Chourasia D, Tripathi S, et al. Relationship of severity of gastroesophageal reflux disease with gastric acid secretory profile and esophageal acid exposure during nocturnal acid breakthrough: a study using 24-h dual-channel pH-metry. Scand J Gastroenterol. 2008;43(6):654–661.
  • Lundell LR, Dent J, Bennett JR, et al. Endoscopic assessment of oesophagitis: clinical and functional correlates and further validation of the Los Angeles classification. Gut. 1999;45(2):172–180.
  • Kaushik AC, Raj U. AI-driven drug discovery: a boon against COVID-19? AI Open. 2020;1:1–4.
  • Alafif T, Tehame AM, Bajaba S, et al. Machine and deep learning towards COVID-19 diagnosis and treatment: survey, challenges, and future directions. IJERPH. 2021;18(3):1117–1127.
  • Hann A, Meining A. Artificial intelligence in endoscopy. Visc Med. 2021;37(6):471–475.
  • Tziortziotis I, Laskaratos F-M, Coda S, et al. Role of artificial intelligence in video capsule endoscopy. Diagnostics. 2021;11(7):1130–1192.
  • Ikenoyama Y, Hirasawa T, Ishioka M, et al. Detecting early gastric cancer: comparison between the diagnostic ability of convolutional neural networks and endoscopists. Dig Endosc. 2021;33(1):141–150.
  • Guo L, Xiao X, Wu C, et al. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos). Gastrointest Endosc. 2020;91(1):41–51.
  • LeCun Y, Bengio Y, Hinton G, et al. Deep learning. Nature. 2015;521(7553):436–444.
  • Yamashita R, Nishio M, Do RKG, et al. Convolutional neural networks: an overview and application in radiology. Insights Imag. 2018;9(4):611–629.
  • Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Boston, MA, USA; 2015. p. 1–9.
  • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–118.
  • Li L, Verma M, Nakashima Y, et al. IterNet: retinal image segmentation utilizing structural redundancy in vessel networks. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV); Snowmass, CO, USA; 2020. p. 3645–3654.
  • Wang B, Takeda T, Sugimoto K, et al. Automatic creation of annotations for chest radiographs based on the positional information extracted from radiographic image reports. Comput Methods Programs Biomed. 2021;209(2021):106331.
  • Ting DSW, Cheung CY-L, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–2223.
  • Huang C-R, Chen Y-T, Chen W-Y, et al. Gastroesophageal reflux disease diagnosis using hierarchical heterogeneous descriptor fusion support vector machine. IEEE Trans Biomed Eng. 2016;63(3):588–599.
  • Wang C-C, Chiu Y-C, Chen W-L, et al. A deep learning model for classification of endoscopic gastroesophageal reflux disease. IJERPH. 2021;18(5):2428–2422 Mar.
  • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556; 2015.
  • He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Las Vegas, NV, USA; 2016. p. 770–778.
  • Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2022:2736–2746.
  • Huang G, Liu Z, Maaten Lvd, et al. Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Honolulu, HI, USA; 2017. p. 2261–2269.
  • Tan M, Quoc VL. EfficientNet: rethinking model scaling for convolutional neural networks. International conference on machine learning. PMLR. 2019:6105–6114.
  • Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning. AAAI. 2017. p. 4278–4284.
  • McInnes L, Healy J. UMAP: uniform manifold approximation and projection for dimension reduction. The Journal of Open Source Software. 2018;3(29):861.
  • Zhou B, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Las Vegas, NV, USA; 2016. p. 2921–2929.
  • Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis. 2020;128(2):336–359.
  • Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: European conference on computer vision. Springer, Cham, 2014. p. 818–833.
  • Petsiuk V, Das A, Saenko K. RISE: randomized input sampling for explanation of Black-box models. British Machine Vision Conference (BMVC); 2018.
  • Li L, Wang B, Verma M, et al. SCOUTER: slot attention-based classifier for explainable image recognition. 2021 IEEE/CVF International Conference on Computer Vision (ICCV); Montreal, QC, Canada, 2021. p. 1026–1035.
  • Wang B, Li L, Verma M, et al. MTUNet: few-shot image classification with visual explanations. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); Nashville, TN, USA; 2021. p. 2294–2298.
  • Schulz K, Sixt L, Tombari F, et al. Restricting the flow: information bottlenecks for attribution. ArXiv abs/2001.00396; 2020. n. pag.
  • McInnes L, Healy J, Saul N, et al. UMAP: uniform manifold approximation and projection. JOSS. 2018;3(29):861.
  • Xu Y, Tan Y, Wang Y, et al. A gratifying step forward for the application of artificial intelligence in the field of endoscopy: a narrative review. Surg Laparosc Endosc Percutan Tech. 2020;31(2):254–263.
  • Song Y-Q, Mao X-L, Zhou X-B, et al. Use of artificial intelligence to improve the quality control of gastrointestinal endoscopy. Front Med (Lausanne). 2021;8:709322–709347.
  • Yu C, Helwig EJ. Artificial intelligence in gastric cancer: a translational narrative review. Ann Transl Med. 2021;9(3):269.
  • Visaggi P, Barberio B, Ghisa M, et al. Modern diagnosis of early esophageal cancer: from blood biomarkers to advanced endoscopy and artificial intelligence. Cancers. 2021;13(13):3124–3162.
  • Pace F, Riegler G, de Leone A, EMERGE Study Group, et al. Is it possible to clinically differentiate erosive from nonerosive reflux disease patients? A study using an artificial neural networks-assisted algorithm. Eur J Gastroenterol Hepatol. 2010;22(10):1163–1168.
  • Xiao Y, Zhang S, Dai N, et al. Phase III, randomised, double-blind, multicentre study to evaluate the efficacy and safety of vonoprazan compared with lansoprazole in Asian patients with erosive oesophagitis. Gut. 2020;69(2):224–230.
  • Iwakiri K, Fujiwara Y, Manabe N, et al. Evidence-based clinical practice guidelines for gastroesophageal reflux disease 2021. J Gastroenterol. 2022;57(4):267–285.
  • Zerbib F, Bredenoord AJ, Fass R, et al. ESNM/ANMS consensus paper: diagnosis and management of refractory gastro-esophageal reflux disease. Neurogastroenterol Motil. 2021;33(4):e14075.
  • Pauwels A, Boecxstaens V, Andrews CN, et al. How to select patients for antireflux surgery? The ICARUS guidelines (international consensus regarding preoperative examinations and clinical characteristics assessment to select adult patients for antireflux surgery). Gut. 2019;68(11):1928–1941.
  • Katz PO, Dunbar KB, Schnoll-Sussman FH, et al. ACG clinical guideline for the diagnosis and management of gastroesophageal reflux disease. Am J Gastroenterol. 2022;117(1):27–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.