106
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Liquid biopsy of oesophageal squamous cell carcinoma: implications in diagnosis, prognosis, and treatment monitoring

, , ORCID Icon, , , , & show all
Pages 698-709 | Received 20 Oct 2023, Accepted 20 Jan 2024, Published online: 11 Mar 2024

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660.
  • Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J. 2022;135(5):584–590. doi: 10.1097/CM9.0000000000002108.
  • Morgan E, Soerjomataram I, Rumgay H, et al. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: new estimates from GLOBOCAN 2020. Gastroenterology. 2022;163(3):649–658.e2. doi: 10.1053/j.gastro.2022.05.054.
  • Lin L, Li Z, Yan L, et al. Global, regional, and national cancer incidence and death for 29 cancer groups in 2019 and trends analysis of the global cancer burden, 1990–2019. J Hematol Oncol. 2021;14(1):197. doi: 10.1186/s13045-021-01213-z.
  • Shi Y, Ge X, Ju M, et al. Circulating tumor cells in esophageal squamous cell carcinoma – mini review. Cancer Manag Res. 2021;13:8355–8365. doi: 10.2147/CMAR.S337489.
  • Wang Y, Huang Y, Chase RC, et al. Global burden of digestive diseases: a systematic analysis of the global burden of diseases study, 1990 to 2019. Gastroenterology. 2023;165(3):773–783.e15. doi: 10.1053/j.gastro.2023.05.050.
  • Cotton S, Ferreira D, Soares J, et al. Target score—a proteomics data selection tool applied to esophageal cancer identifies GLUT1-Sialyl Tn glycoforms as biomarkers of cancer aggressiveness. Int J Mol Sci. 2021;22(4):1664. doi: 10.3390/ijms22041664.
  • Visaggi P, Barberio B, Ghisa M, et al. Modern diagnosis of early esophageal cancer: from blood biomarkers to advanced endoscopy and artificial intelligence. Cancers. 2021;13(13):3162. doi: 10.3390/cancers13133162.
  • Lan W, Lihong L, Chun H, et al. Comparison of efficacy and safety between simultaneous integrated boost intensity-modulated radiotherapy and standard-dose intensity-modulated radiotherapy in locally advanced esophageal squamous cell carcinoma: a retrospective study. Strahlenther Onkol. 2022;198(9):802–811. doi: 10.1007/s00066-021-01894-y.
  • Chen R, Liu Y, Song G, et al. Effectiveness of one-time endoscopic screening programme in prevention of upper gastrointestinal cancer in China: a multicentre population-based cohort study. Gut. 2021;70(2):251–260. doi: 10.1136/gutjnl-2019-320200.
  • Codipilly DC, Qin Y, Dawsey SM, et al. Screening for esophageal squamous cell carcinoma: recent advances. Gastrointest Endosc. 2018;88(3):413–426. doi: 10.1016/j.gie.2018.04.2352.
  • Tong YS, Wang XW, Zhou XL, et al. Identification of the long non-coding RNA POU3F3 in plasma as a novel biomarker for diagnosis of esophageal squamous cell carcinoma. Mol Cancer. 2015;14(1):3. doi: 10.1186/1476-4598-14-3.
  • Ren C, He P, Zhang J, et al. Malignant characteristics of circulating tumor cells and corresponding primary tumor in a patient with esophageal squamous cell carcinoma before and after surgery. Cancer Biol Ther. 2011;11(7):633–638. doi: 10.4161/cbt.11.7.14950.
  • Diaz LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–586. doi: 10.1200/JCO.2012.45.2011.
  • Siravegna G, Marsoni S, Siena S, et al. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14(9):531–548. doi: 10.1038/nrclinonc.2017.14.
  • Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol. 2022;15(1):131. doi: 10.1186/s13045-022-01351-y.
  • Yu D, Li Y, Wang M, et al. Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer. 2022;21(1):56. doi: 10.1186/s12943-022-01509-9.
  • Li K, Lin Y, Luo Y, et al. A signature of saliva-derived exosomal small RNAs as predicting biomarker for esophageal carcinoma: a multicenter prospective study. Mol Cancer. 2022;21(1):21. doi: 10.1186/s12943-022-01499-8.
  • Espejo C, Lyons B, Woods GM, et al. Early cancer biomarker discovery using DIA-MS proteomic analysis of EVs from peripheral blood. Methods Mol Biol. 2023;2628:127–152. doi: 10.1007/978-1-0716-2978-9_9.
  • Tivey A, Church M, Rothwell D, et al. Circulating tumour DNA—looking beyond the blood. Nat Rev Clin Oncol. 2022;19(9):600–612. doi: 10.1038/s41571-022-00660-y.
  • Yang D, Zhang W, Zhang H, et al. Progress, opportunity, and perspective on exosome isolation – efforts for efficient exosome-based theranostics. Theranostics. 2020;10(8):3684–3707. doi: 10.7150/thno.41580.
  • Li X, Li C, Zhang L, et al. The significance of exosomes in the development and treatment of hepatocellular carcinoma. Mol Cancer. 2020;19(1):1. doi: 10.1186/s12943-019-1085-0.
  • Janockova J, Matejova J, Moravek M, et al. Small extracellular vesicles derived from human chorionic MSCs as modern perspective towards cell-free therapy. Int J Mol Sci. 2021;22(24):13581. doi: 10.3390/ijms222413581.
  • Sufianov A, Kostin A, Begliarzade S, et al. Exosomal non coding RNAs as a novel target for diabetes mellitus and its complications. Noncoding RNA Res. 2023;8(2):192–204. doi: 10.1016/j.ncrna.2023.02.001.
  • Lin Y, Dong H, Deng W, et al. Evaluation of salivary exosomal chimeric GOLM1-NAA35 RNA as a potential biomarker in esophageal carcinoma. Clin Cancer Res. 2019;25(10):3035–3045. doi: 10.1158/1078-0432.CCR-18-3169.
  • Zhu L, Li J, Gong Y, et al. Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis. Mol Cancer. 2019;18(1):74. doi: 10.1186/s12943-019-1000-8.
  • Li K, Lin Y, Zhou Y, et al. Salivary extracellular microRNAs for early detection and prognostication of esophageal cancer: a clinical study. Gastroenterology. 2023;165(4):932–945.e9. doi: 10.1053/j.gastro.2023.06.021.
  • Liu T, Du LT, Wang YS, et al. Development of a novel serum exosomal microRNA nomogram for the preoperative prediction of lymph node metastasis in esophageal squamous cell carcinoma. Front Oncol. 2020;10:573501. doi: 10.3389/fonc.2020.573501.
  • Fan L, Cao Q, Liu J, et al. Circular RNA profiling and its potential for esophageal squamous cell cancer diagnosis and prognosis. Mol Cancer. 2019;18(1):16. doi: 10.1186/s12943-018-0936-4.
  • Zhao A, Guo L, Xu J, et al. Identification and validation of circulating exosomes-based liquid biopsy for esophageal cancer. Cancer Med. 2019;8(7):3566–3574. doi: 10.1002/cam4.2224.
  • Liu S, Lin Z, Zheng Z, et al. Serum exosomal microRNA-766-3p expression is associated with poor prognosis of esophageal squamous cell carcinoma. Cancer Sci. 2020;111(10):3881–3892. doi: 10.1111/cas.14550.
  • Qiu ML, Li X, Lin JB, et al. Serum exosomal miR-182 upregulation predicts unfavorable prognosis of esophageal squamous cell carcinoma. Eur Rev Med Pharmacol Sci. 2020;24(10):5412–5418. doi: 10.26355/eurrev_202005_21325.
  • Liu Z, Huang Y, Han Z, et al. Exosome-mediated miR-25/miR-203 as a potential biomarker for esophageal squamous cell carcinoma: improving early diagnosis and revealing malignancy. Transl Cancer Res. 2021;10(12):5174–5182. doi: 10.21037/tcr-21-1123.
  • Liu S, Lin Z, Rao W, et al. Upregulated expression of serum exosomal hsa_circ_0026611 is associated with lymph node metastasis and poor prognosis of esophageal squamous cell carcinoma. J Cancer. 2021;12(3):918–926. doi: 10.7150/jca.50548.
  • Lu Q, Wang X, Zhu J, et al. Hypoxic tumor-derived exosomal Circ0048117 facilitates M2 macrophage polarization acting as miR-140 sponge in esophageal squamous cell carcinoma. Onco Targets Ther. 2020;13:11883–11897. doi: 10.2147/OTT.S284192.
  • Yan S, Du L, Jiang X, et al. Evaluation of serum exosomal lncRNAs as diagnostic and prognostic biomarkers for esophageal squamous cell carcinoma. Cancer Manag Res. 2020;12:9753–9763. doi: 10.2147/CMAR.S250971.
  • Xie K, Zheng C, Gu W, et al. A RASSF8-AS1 based exosomal lncRNAs panel used for diagnostic and prognostic biomarkers for esophageal squamous cell carcinoma. Thorac Cancer. 2022;13(23):3341–3352. doi: 10.1111/1759-7714.14690.
  • Du X, Zhang X, Dong J, et al. Irradiation-induced exosomal HMGB1 to confer radioresistance via the PI3K/AKT/FOXO3A signaling pathway in ESCC. J Transl Med. 2022;20(1):507. doi: 10.1186/s12967-022-03720-0.
  • Zhou X, Wen W, Zhu J, et al. A six-microRNA signature in plasma was identified as a potential biomarker in diagnosis of esophageal squamous cell carcinoma. Oncotarget. 2017;8(21):34468–34480. doi: 10.18632/oncotarget.16519.
  • Kim S, Kim GH, Park SJ, et al. Exosomal microRNA analyses in esophageal squamous cell carcinoma cell lines. J Clin Med. 2022;11(15):4426. doi: 10.3390/jcm11154426.
  • Jiao Z, Yu A, Rong W, et al. Five-lncRNA signature in plasma exosomes serves as diagnostic biomarker for esophageal squamous cell carcinoma. Aging. 2020;12(14):15002–15010. doi: 10.18632/aging.103559.
  • Sun Y, Qian Y, Chen C, et al. Extracellular vesicle IL-32 promotes the M2 macrophage polarization and metastasis of esophageal squamous cell carcinoma via FAK/STAT3 pathway. J Exp Clin Cancer Res. 2022;41(1):145. doi: 10.1186/s13046-022-02348-8.
  • Tang B, Zhang Q, Liu K, et al. Exosomal circRNA FNDC3B promotes the progression of esophageal squamous cell carcinoma by sponging miR-490-5p and regulating thioredoxin reductase 1 expression. Bioengineered. 2022;13(5):13829–13848. doi: 10.1080/21655979.2022.2084484.
  • Xu ML, Liu TC, Dong FX, et al. Exosomal lncRNA LINC01711 facilitates metastasis of esophageal squamous cell carcinoma via the miR-326/FSCN1 axis. Aging. 2021;13(15):19776–19788. doi: 10.18632/aging.203389.
  • Zhang C, Luo Y, Cao J, et al. Exosomal lncRNA FAM225A accelerates esophageal squamous cell carcinoma progression and angiogenesis via sponging miR-206 to upregulate NETO2 and FOXP1 expression. Cancer Med. 2020;9(22):8600–8611. doi: 10.1002/cam4.3463.
  • Li W, Zhang L, Guo B, et al. Exosomal FMR1-AS1 facilitates maintaining cancer stem-like cell dynamic equilibrium via TLR7/NFκB/c-Myc signaling in female esophageal carcinoma. Mol Cancer. 2019;18(1):22. doi: 10.1186/s12943-019-0949-7.
  • Li Z, Qin X, Bian W, et al. Exosomal lncRNA ZFAS1 regulates esophageal squamous cell carcinoma cell proliferation, invasion, migration and apoptosis via microRNA-124/STAT3 axis. J Exp Clin Cancer Res. 2019;38(1):477. doi: 10.1186/s13046-019-1473-8.
  • Shi Z, Jiang T, Cao B, et al. CAF-derived exosomes deliver LINC01410 to promote epithelial-mesenchymal transition of esophageal squamous cell carcinoma. Exp Cell Res. 2022;412(2):113033. doi: 10.1016/j.yexcr.2022.113033.
  • Ma J, Xiao Y, Tian B, et al. Genome-wide analyses of long non-coding RNA expression profiles and functional network analysis in esophageal squamous cell carcinoma. Sci Rep. 2019;9(1):9162. doi: 10.1038/s41598-019-45493-5.
  • Zhao F, Li Z, Dong Z, et al. Exploring the potential of exosome-related LncRNA pairs as predictors for immune microenvironment, survival outcome, and microbiotain landscape in esophageal squamous cell carcinoma. Front Immunol. 2022;13:918154. doi: 10.3389/fimmu.2022.918154.
  • Li P, Liu X, Xing W, et al. Exosome-derived miR-200a promotes esophageal cancer cell proliferation and migration via the mediating Keap1 expression. Mol Cell Biochem. 2022;477(4):1295–1308. doi: 10.1007/s11010-022-04353-z.
  • Zhang Y, Chen C, Liu Z, et al. PABPC1-induced stabilization of IFI27 mRNA promotes angiogenesis and malignant progression in esophageal squamous cell carcinoma through exosomal miRNA-21-5p. J Exp Clin Cancer Res. 2022;41(1):111. doi: 10.1186/s13046-022-02339-9.
  • He Z, Li W, Zheng T, et al. Human umbilical cord mesenchymal stem cells-derived exosomes deliver microRNA-375 to downregulate ENAH and thus retard esophageal squamous cell carcinoma progression. J Exp Clin Cancer Res. 2020;39(1):140. doi: 10.1186/s13046-020-01631-w.
  • Jin Y, Meng Q, Zhang B, et al. Cancer-associated fibroblasts-derived exosomal miR-3656 promotes the development and progression of esophageal squamous cell carcinoma via the ACAP2/PI3K-AKT signaling pathway. Int J Biol Sci. 2021;17(14):3689–3701. doi: 10.7150/ijbs.62571.
  • Tan X, Ren S, Fu MZ, et al. microRNA-196b promotes esophageal squamous cell carcinogenesis and chemoradioresistance by inhibiting EPHA7, thereby restoring EPHA2 activity. Am J Cancer Res. 2021;11(7):3594–3610.
  • Chen F, Chu L, Li J, et al. Hypoxia induced changes in miRNAs and their target mRNAs in extracellular vesicles of esophageal squamous cancer cells. Thorac Cancer. 2020;11(3):570–580. doi: 10.1111/1759-7714.13295.
  • Zhao Q, Huang L, Qin G, et al. Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma. Cancer Lett. 2021;518:35–48. doi: 10.1016/j.canlet.2021.06.009.
  • Sun Y, Wang J, Ma Y, et al. Radiation induces NORAD expression to promote ESCC radiotherapy resistance via EEPD1/ATR/Chk1 signalling and by inhibiting pri-miR-199a1 processing and the exosomal transfer of miR-199a-5p. J Exp Clin Cancer Res. 2021;40(1):306. doi: 10.1186/s13046-021-02084-5.
  • Wang H, Qi Y, Lan Z, et al. Exosomal PD-L1 confers chemoresistance and promotes tumorigenic properties in esophageal cancer cells via upregulating STAT3/miR-21. Gene Ther. 2023;30(1-2):88–100. doi: 10.1038/s41434-022-00331-8.
  • Cui Y, Zhang S, Hu X, et al. Tumor-associated fibroblasts derived exosomes induce the proliferation and cisplatin resistance in esophageal squamous cell carcinoma cells through RIG-I/IFN-β signaling. Bioengineered. 2022;13(5):12462–12474. doi: 10.1080/21655979.2022.2076008.
  • Zhao G, Li H, Guo Q, et al. Exosomal sonic hedgehog derived from cancer-associated fibroblasts promotes proliferation and migration of esophageal squamous cell carcinoma. Cancer Med. 2020;9(7):2500–2513. doi: 10.1002/cam4.2873.
  • Li B, Song TN, Wang FR, et al. Tumor-derived exosomal HMGB1 promotes esophageal squamous cell carcinoma progression through inducing PD1+ TAM expansion. Oncogenesis. 2019;8(3):17. doi: 10.1038/s41389-019-0126-2.
  • Ding Z, Yan Y, Guo YL, et al. Esophageal carcinoma cell-excreted exosomal uc.189 promotes lymphatic metastasis. Aging. 2021;13(10):13846–13858. doi: 10.18632/aging.202979.
  • Zheng K, Ma J, Wang Y, et al. Sulforaphane inhibits autophagy and induces exosome-Mediated paracrine senescence via regulating mTOR/TFE3. Mol Nutr Food Res. 2020;64(14):e1901231. doi: 10.1002/mnfr.201901231.
  • Min H, Sun X, Yang X, et al. Exosomes derived from irradiated esophageal carcinoma-infiltrating T cells promote metastasis by inducing the epithelial-mesenchymal transition in esophageal cancer cells. Pathol Oncol Res. 2018;24(1):11–18. doi: 10.1007/s12253-016-0185-z.
  • Mao Y, Wang Y, Dong L, et al. Hypoxic exosomes facilitate angiogenesis and metastasis in esophageal squamous cell carcinoma through altering the phenotype and transcriptome of endothelial cells. J Exp Clin Cancer Res. 2019;38(1):389. doi: 10.1186/s13046-019-1384-8.
  • Tong Y, Yang L, Yu C, et al. Tumor-secreted exosomal lncRNA POU3F3 promotes cisplatin resistance in ESCC by inducing fibroblast differentiation into CAFs. Mol Ther Oncolytics. 2020;18:1–13. doi: 10.1016/j.omto.2020.05.014.
  • Ma J, Xiao Y, Tian B, et al. Long noncoding RNA lnc-ABCA12-3 promotes cell migration, invasion, and proliferation by regulating fibronectin 1 in esophageal squamous cell carcinoma. J Cell Biochem. 2020;121(2):1374–1387. doi: 10.1002/jcb.29373.
  • Zhu Q, Huang L, Yang Q, et al. Metabolomic analysis of exosomal-markers in esophageal squamous cell carcinoma. Nanoscale. 2021;13(39):16457–16464. doi: 10.1039/D1NR04015D.
  • Zhang Y, Lu W, Chen Y, et al. The miR-19b-3p-MAP2K3-STAT3 feedback loop regulates cell proliferation and invasion in esophageal squamous cell carcinoma. Mol Oncol. 2021;15(5):1566–1583. doi: 10.1002/1878-0261.12934.
  • Gao DC, Hou B, Zhou D, et al. Tumor-derived exosomal miR-103a-2-5p facilitates esophageal squamous cell carcinoma cell proliferation and migration. Eur Rev Med Pharmacol Sci. 2020;24(11):6097–6110. doi: 10.26355/eurrev_202006_21505.
  • Xiao Z, Feng X, Zhou Y, et al. Exosomal miR-10527-5p inhibits migration, invasion, lymphangiogenesis and lymphatic metastasis by affecting wnt/β-catenin signaling via Rab10 in esophageal squamous cell carcinoma. Int J Nanomedicine. 2023;18:95–114. doi: 10.2147/IJN.S391173.
  • Yang L, Salai A, Sun X, et al. Proteomic profiling of plasma exosomes reveals CD82 involvement in the development of esophageal squamous cell carcinoma. J Proteomics. 2022;265:104662. doi: 10.1016/j.jprot.2022.104662.
  • Yang L, Zheng S, Liu Q, et al. Plasma‑derived exosomal pyruvate kinase isoenzyme type M2 accelerates the proliferation and motility of oesophageal squamous cell carcinoma cells. Oncol Rep. 2021;46(4):216. doi: 10.3892/or.2021.8167.
  • Matsumoto Y, Kano M, Akutsu Y, et al. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep. 2016;36(5):2535–2543. doi: 10.3892/or.2016.5066.
  • Ma J, Luo Y, Liu Y, et al. Exosome-mediated lnc-ABCA12-3 promotes proliferation and glycolysis but inhibits apoptosis by regulating the toll-like receptor 4/nuclear factor kappa-B signaling pathway in esophageal squamous cell carcinoma. Korean J Physiol Pharmacol. 1993;27(1):61–73. doi: 10.4196/kjpp.2023.27.1.61.
  • Liu T, Li P, Li J, et al. Exosomal and intracellular miR-320b promotes lymphatic metastasis in esophageal squamous cell carcinoma. Mol Ther Oncolytics. 2021;23:163–180. doi: 10.1016/j.omto.2021.09.003.
  • Luo A, Zhou X, Shi X, et al. Exosome-derived miR-339-5p mediates radiosensitivity by targeting Cdc25A in locally advanced esophageal squamous cell carcinoma. Oncogene. 2019;38(25):4990–5006. doi: 10.1038/s41388-019-0771-0.
  • Yan D, Cui D, Zhu Y, et al. M6PR- and EphB4-Rich exosomes secreted by serglycin-overexpressing esophageal cancer cells promote cancer progression. Int J Biol Sci. 2023;19(2):625–640. doi: 10.7150/ijbs.79875.
  • Qiao Y, Li J, Shi C, et al. Prognostic value of circulating tumor cells in the peripheral blood of patients with esophageal squamous cell carcinoma. Onco Targets Ther. 2017;10:1363–1373. doi: 10.2147/OTT.S129004.
  • Lin D, Shen L, Luo M, et al. Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther. 2021;6(1):404. doi: 10.1038/s41392-021-00817-8.
  • Tsavlis D, Katopodi T, Anestakis D, et al. Molecular and immune phenotypic modifications during metastatic dissemination in lung carcinogenesis. Cancers. 2022;14(15):3626. doi: 10.3390/cancers14153626.
  • Ronvaux L, Riva M, Coosemans A, et al. Liquid biopsy in glioblastoma. Cancers. 2022;14(14):3394. doi: 10.3390/cancers14143394.
  • Li H, Song P, Zou B, et al. Circulating tumor cell analyses in patients with esophageal squamous cell carcinoma using epithelial Marker-Dependent and -Independent approaches. Medicine. 2015;94(38):e1565. doi: 10.1097/MD.0000000000001565.
  • Boya M, Ozkaya-Ahmadov T, Swain BE, et al. High throughput, label-free isolation of circulating tumor cell clusters in meshed microwells. Nat Commun. 2022;13(1):3385. doi: 10.1038/s41467-022-31009-9.
  • Jiang S, Mao C, Jiang B, et al. High expression of BCAR1 by circulating tumor cells and tumor tissues is predictive of a poor prognosis of early-stage lung adenocarcinoma potentially due to regulation of epithelial-mesenchymal transition. Technol Cancer Res Treat. 2020;19:1533033820983086. doi: 10.1177/1533033820983086.
  • Montalbán-Hernández K, Cantero-Cid R, Casalvilla-Dueñas JC, et al. Colorectal cancer stem cells fuse with monocytes to form tumour hybrid cells with the ability to migrate and evade the immune system. Cancers. 2022;14(14):3445. doi: 10.3390/cancers14143445.
  • Gogoi P, Sepehri S, Zhou Y, et al. Development of an automated and sensitive microfluidic device for capturing and characterizing circulating tumor cells (CTCs) from clinical blood samples. PLOS One. 2016;11(1):e0147400. doi: 10.1371/journal.pone.0147400.
  • Ujiie D, Matsumoto T, Endo E, et al. Circulating tumor cells after neoadjuvant chemotherapy are related with recurrence in esophageal squamous cell carcinoma. Esophagus. 2021;18(3):566–573. doi: 10.1007/s10388-021-00829-x.
  • Li W, Liu JB, Hou LK, et al. Liquid biopsy in lung cancer: significance in diagnostics, prediction, and treatment monitoring. Mol Cancer. 2022;21(1):25. doi: 10.1186/s12943-022-01505-z.
  • Chen W, Li Y, Yuan D, et al. Practical value of identifying circulating tumor cells to evaluate esophageal squamous cell carcinoma staging and treatment efficacy: circulating tumor cells in ESCC. Thorac Cancer. 2018;9(8):956–966. doi: 10.1111/1759-7714.12771.
  • Han D, Chen K, Che J, et al. Detection of epithelial-mesenchymal transition status of circulating tumor cells in patients with esophageal squamous carcinoma. Biomed Res Int. 2018;2018:7610154. doi: 10.1155/2018/7610154.
  • Lee HJ, Kim GH, Park SJ, et al. Clinical significance of TWIST-Positive circulating tumor cells in patients with esophageal squamous cell carcinoma. Gut Liver. 2021;15(4):553–561. doi: 10.5009/gnl20194.
  • Choi MK, Kim GH, I H, et al. Circulating tumor cells detected using fluid-assisted separation technique in esophageal squamous cell carcinoma. J Gastroenterol Hepatol. 2019;34(3):552–560. doi: 10.1111/jgh.14543.
  • Zhao Y, Zhao S, Chen Y, et al. Isolation of circulating tumor cells in patients undergoing surgery for esophageal cancer and a specific confirmation method. Oncol Lett. 2019;17(4):3817–3825. doi: 10.3892/ol.2019.10017.
  • Zhao Y, Han L, Zhang W, et al. Preoperative chemotherapy compared with postoperative adjuvant chemotherapy for squamous cell carcinoma of the thoracic oesophagus with the detection of circulating tumour cells randomized controlled trial. Int J Surg. 2020;73:1–8. doi: 10.1016/j.ijsu.2019.11.005.
  • Okumura T, Yamaguchi T, Watanabe T, et al. Flow cytometric detection of circulating tumor cells using a candidate stem cell marker, p75 neurotrophin receptor (p75NTR). Methods Mol Biol. 2017;1634:211–217. doi: 10.1007/978-1-4939-7144-2_18.
  • Yamaguchi T, Okumura T, Hirano K, et al. Detection of circulating tumor cells by p75NTR expression in patients with esophageal cancer. World J Surg Oncol. 2016;14(1):40. doi: 10.1186/s12957-016-0793-9.
  • Yin XD, Yuan X, Xue JJ, et al. Clinical significance of carcinoembryonic antigen-, cytokeratin 19-, or survivin-positive circulating tumor cells in the peripheral blood of esophageal squamous cell carcinoma patients treated with radiotherapy: circulating tumor cells in ESCC. Dis Esophagus. 2012;25(8):750–756. doi: 10.1111/j.1442-2050.2012.01326.x.
  • Zhang Y, Li J, Wang L, et al. Clinical significance of detecting circulating tumor cells in patients with esophageal squamous cell carcinoma by EpCAM‑independent enrichment and immunostaining‑fluorescence in situ hybridization. Mol Med Rep. 2019;20(2):1551–1560. doi: 10.3892/mmr.2019.10420.
  • Li SP, Guan Q L, Zhao D, et al. Detection of circulating tumor cells by fluorescent immunohistochemistry in patients with esophageal squamous cell carcinoma: potential clinical applications. Med Sci Monit. 2016;22:1654–1662. doi: 10.12659/MSM.898335.
  • Han L, Li YJ, Zhang WD, et al. Clinical significance of tumor cells in the peripheral blood of patients with esophageal squamous cell carcinoma. Medicine. 2019;98(6):e13921. doi: 10.1097/MD.0000000000013921.
  • Ko JMY, Ng HY, Lam KO, et al. Liquid biopsy serial monitoring of treatment responses and relapse in advanced esophageal squamous cell carcinoma. Cancers. 2020;12(6):1352. doi: 10.3390/cancers12061352.
  • Yuan Z, Wang X, Geng X, et al. Multi-region sequencing reveals genetic correlation between esophageal squamous cell carcinoma and matched cell-free DNA. Cancer Genet. 2021;258–259:93–100. doi: 10.1016/j.cancergen.2021.08.005.
  • Pantel K, Alix-Panabières C. Liquid biopsy and minimal residual disease – latest advances and implications for cure. Nat Rev Clin Oncol. 2019;16(7):409–424. doi: 10.1038/s41571-019-0187-3.
  • Boldrin E, Curtarello M, Fassan M, et al. Allelic imbalance analysis in liquid biopsy to monitor locally advanced esophageal cancer patients during treatment. Front Oncol. 2020;10:1320. doi: 10.3389/fonc.2020.01320.
  • Barbany G, Arthur C, Liedén A, et al. Cell-free tumour DNA testing for early detection of cancer – a potential future tool. J Intern Med. 2019;286(2):118–136. doi: 10.1111/joim.12897.
  • Jie X, Du M, Zhang M, et al. Mutation analysis of circulating tumor DNA and paired ascites and tumor tissues in ovarian cancer. Exp Ther Med. 2022;24(3):542. doi: 10.3892/etm.2022.11479.
  • Heitzer E, Haque IS, Roberts CES, et al. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019;20(2):71–88. doi: 10.1038/s41576-018-0071-5.
  • Abbosh C, Birkbak NJ, Swanton C. Early stage NSCLC—challenges to implementing ctDNA-based screening and MRD detection. Nat Rev Clin Oncol. 2018;15(9):577–586. doi: 10.1038/s41571-018-0058-3.
  • Diehl F, Li M, Dressman D, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA. 2005;102(45):16368–16373. doi: 10.1073/pnas.0507904102.
  • Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24. doi: 10.1126/scitranslmed.3007094.
  • Bian Y, Gao Y, Lu C, et al. Genome-wide methylation profiling identified methylated KCNA3 and OTOP2 as promising diagnostic markers for esophageal squamous cell carcinoma. Chin Med J. 2023. doi: 10.1097/CM9.0000000000002832.
  • Hsieh CC, Hsu HS, Chang SC, et al. Circulating cell-free DNA levels could predict oncological outcomes of patients undergoing esophagectomy for esophageal squamous cell carcinoma. Int J Mol Sci. 2016;17(12):2131. doi: 10.3390/ijms17122131.
  • Tomochika S, Iizuka N, Watanabe Y, et al. Increased serum cell-free DNA levels in relation to inflammation are predictive of distant metastasis of esophageal squamous cell carcinoma. Exp Ther Med. 2010;1(1):89–92. doi: 10.3892/etm_00000016.
  • Wang X, Yu N, Cheng G, et al. Prognostic value of circulating tumour DNA during post-radiotherapy surveillance in locally advanced esophageal squamous cell carcinoma. Clin Transl Med. 2022;12(11):e1116. doi: 10.1002/ctm2.1116.
  • Nasrollahzadeh D, Roshandel G, Delhomme TM, et al. TP53 targeted deep sequencing of cell-free DNA in esophageal squamous cell carcinoma using low-quality serum: concordance with tumor mutation. Int J Mol Sci. 2021;22(11):5627. doi: 10.3390/ijms22115627.
  • Hagi T, Kurokawa Y, Takahashi T, et al. Molecular barcode sequencing for highly sensitive detection of circulating tumor DNA in patients with esophageal squamous cell carcinoma. Oncology. 2020;98(4):222–229. doi: 10.1159/000504808.
  • Liu T, Yao Q, Jin H. Plasma circulating tumor DNA sequencing predicts minimal residual disease in resectable esophageal squamous cell carcinoma. Front Oncol. 2021;11:616209. doi: 10.3389/fonc.2021.616209.
  • Zhao Q, Miao C, Lu Q, et al. Clinical significance of monitoring circulating free DNA and plasma heat shock protein 90alpha in patients with esophageal squamous cell carcinoma. Cancer Manag Res. 2021;13:2223–2234. doi: 10.2147/CMAR.S295927.
  • Meng P, Wei J, Geng Y, et al. Targeted sequencing of circulating cell-free DNA in stage II-III resectable oesophageal squamous cell carcinoma patients. BMC Cancer. 2019;19(1):818. doi: 10.1186/s12885-019-6025-2.
  • Yang D, Xu F, Li Y, et al. Assessment of durable chemoimmunotherapy response via circulating tumor DNA in advanced esophageal squamous cell carcinoma. Thorac Cancer. 2022;13(19):2786–2791. doi: 10.1111/1759-7714.14610.
  • Fujisawa R, Iwaya T, Endo F, et al. Early dynamics of circulating tumor DNA predict chemotherapy responses for patients with esophageal cancer. Carcinogenesis. 2021;42(10):1239–1249. doi: 10.1093/carcin/bgab088.
  • Wang Q, Liu H, Liu Z, et al. Circ-SLC7A5, a potential prognostic circulating biomarker for detection of ESCC. Cancer Genet. 2020;240:33–39. doi: 10.1016/j.cancergen.2019.11.001.
  • Huang Z, Zhang L, Zhu D, et al. A novel serum microRNA signature to screen esophageal squamous cell carcinoma. Cancer Med. 2017;6(1):109–119. doi: 10.1002/cam4.973.
  • Miyoshi J, Zhu Z, Luo A, et al. A microRNA-based liquid biopsy signature for the early detection of esophageal squamous cell carcinoma: a retrospective, prospective and multicenter study. Mol Cancer. 2022;21(1):44. doi: 10.1186/s12943-022-01507-x.
  • Sun G, Ye H, Wang X, et al. Autoantibodies against tumor-associated antigens combined with microRNAs in detecting esophageal squamous cell carcinoma. Cancer Med. 2020;9(3):1173–1182. doi: 10.1002/cam4.2792.
  • Ibuki Y, Nishiyama Y, Tsutani Y, et al. Circulating microRNA/isomiRs as novel biomarkers of esophageal squamous cell carcinoma. PLOS One. 2020;15(4):e0231116. doi: 10.1371/journal.pone.0231116.
  • Khazaei S, Nouraee N, Moradi A, et al. A novel signaling role for miR-451 in esophageal tumor microenvironment and its contribution to tumor progression. Clin Transl Oncol. 2017;19(5):633–640. doi: 10.1007/s12094-016-1575-0.
  • Takeshita N, Hoshino I, Mori M, et al. Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer. 2013;108(3):644–652. doi: 10.1038/bjc.2013.8.
  • Hoshino I, Ishige F, Iwatate Y, et al. Cell-free microRNA-1246 in different body fluids as a diagnostic biomarker for esophageal squamous cell carcinoma. PLOS One. 2021;16(3):e0248016. doi: 10.1371/journal.pone.0248016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.