1,216
Views
22
CrossRef citations to date
0
Altmetric
Plant nutrition

Rhizosphere calcareous soil P-extraction at the expense of organic carbon from root-exuded organic acids induced by phosphorus deficiency in several plant species

&
Pages 640-650 | Received 29 Dec 2013, Accepted 10 Jun 2014, Published online: 07 Jul 2014

REFERENCES

  • Atkinson MJ, Smith SV 1983: C: N: P ratios of benthic marine plants [carbon: nitrogen: phosphorus]. Limnol. Oceanogr., 28, 568–574. doi:10.4319/lo.1983.28.3.0568
  • Broadley MR, Rose T, Frei M, Pariasca-Tanaka J, Yoshihashi T, Thomson M, Hammond JP, Aprile A, Close TJ, Ismail AM, Wissuwa M 2010: Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity. New Phytol., 186, 400–414.
  • Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei MR, Borriss R, von Wirén N 2011: Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J. Plant Nutr. Soil Sci., 174, 3–11. doi:10.1002/jpln.201000085
  • Dakora FD, Phillips DA 2002: Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil, 245, 35–47. doi:10.1023/A:1020809400075
  • Dinkci N, Akalın AS, Gönc S, Ünal G 2007: Isocratic reverse-phase HPLC for determination of organic acids in Kargı Tulum cheese. Chromatographia, 66, 45–49. doi:10.1365/s10337-007-0234-6
  • Farrar J, Hawes M, Jones DL, Lindow S 2003: How roots control the flux of carbon to the rhizosphere. Ecology, 84, 827–837. doi:10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2
  • Farrar JF, Jones DL 2000: The control of carbon acquisition by roots. New Phytol., 147, 43–53. doi:10.1046/j.1469-8137.2000.00688.x
  • Gaume A, Mächler A, De León C, Narro L, Frossard E 2001: Low-P tolerance by maize (Zea mays L.) genotypes: significance of root growth, and organic acids and acid phosphatase root exudation. Plant Soil, 228, 253–264. doi:10.1023/A:1004824019289
  • Gerke J, Beißner L, Römer W 2000a: The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root. I. The basic concept and determination of soil parameters. J. Plant Nutr. Soil Sci., 163, 207–212. doi:10.1002/(SICI)1522-2624(200004)163:2<207::AID-JPLN207>3.0.CO;2-P
  • Gerke J, Römer W, Beißner L 2000b: The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root. II. The importance of soil and plant parameters for uptake of mobilized P. J. Plant Nutr. Soil Sci., 163, 213–219. doi:10.1002/(SICI)1522-2624(200004)163:2<213::AID-JPLN213>3.0.CO;2-0
  • Gollany HT, Bloom PR, Schumacher TE 1997: Rhizosphere soil-water collection by immiscible displacement-centrifugation technique. Plant Soil, 188, 59–64. doi:10.1023/A:1004208530887
  • Hoffland E, Wei C, Wissuwa M 2006: Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant Soil, 283, 155–162. doi:10.1007/s11104-005-3937-1
  • Jones DL 1998: Organic acids in the rhizosphere-a critical review. Plant Soil, 205, 25–44. doi:10.1023/A:1004356007312
  • Jones DL, Darrah PR 1994: Role of root derived organic-acids in the mobilization of nutrients from the rhizosphere. Plant Soil, 166, 247–257. doi:10.1007/BF00008338
  • Jones DL, Dennis PG, Owen AG, van Hees PAW 2003: Organic acid behavior in soils – misconceptions and knowledge gaps. Plant Soil, 248, 31–41. doi:10.1023/A:1022304332313
  • Jones DL, Nguyen C, Finlay RD 2009: Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil, 321, 5–33. doi:10.1007/s11104-009-9925-0
  • Kraffczyk I, Trolldenie G, Beringer H 1984: Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol. Biochem., 16, 315–322. doi:10.1016/0038-0717(84)90025-7
  • Li H, Shen J, Zhang F, Clairotte M, Drevon JJ, Le Cadre E, Hinsinger P 2008: Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat (Triticum turgidum durum L.) grown in monocropping and intercropping systems. Plant Soil, 312, 139–150. doi:10.1007/s11104-007-9512-1
  • Liu CC, Liu YG, Guo K, Fan DY, Li GG, Zheng YR, Yu LF, Yang R 2011: Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environ. Exp. Bot., 71, 174–183. doi:10.1016/j.envexpbot.2010.11.012
  • Liu CC, Liu YG, Guo K, Zheng YR, Li GQ, Yu LF, Yang R 2010: Influence of drought intensity on the response of six woody karst species subjected to successive cycles of drought and rewatering. Physiol. Plantarum., 139, 39–54. doi:10.1111/j.1399-3054.2009.01341.x
  • López-Bucio J, Nieto-Jacobo MF, Ramírez-Rodríguez V, Herrera-Estrella L 2000: Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci., 160, 1–13. doi:10.1016/S0168-9452(00)00347-2
  • Lu RS 1999: Methods in Agricultural Chemical Analysis of Soil. China Agricultural Science and Technology Publishing House, Beijing.
  • Marschner H 1995: Mineral Nutrition of Higher Plants, 2nd edn. Academic Press, London.
  • Nguyen C 2003: Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie, 23, 375–396. doi:10.1051/agro:2003011
  • Olsen SR, Sommers LE 1982: Phosphorous, Methods of Soil Analysis, Part 2-Chemical and Microbiological Properties, pp. 403–430. Soil Science Society of America, Madison, Wisconsin.
  • Parker DR, Chaney RL, Norvell WA 1995: Chemical Equilibria Models, Applications to Plant Research, Chemical Equilibria and Reaction Models, pp. 163–200. Soil Science Society of America, Madison, Wisconsin.
  • Sandnes A, Eldhuset TD, Wollebaek G 2005: Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biol. Biochem., 37, 259–269. doi:10.1016/j.soilbio.2004.07.036
  • Shahbaz AM, Oki Y, Adachi T, Murata Y, Khan MHR 2006: Phosphorus starvation induced root-mediated pH changes in solublization and acquisition of sparingly soluble P sources and organic acids exudation by Brassica cultivars. Soil Sci. Plant Nutr., 52, 623–633. doi:10.1111/j.1747-0765.2006.00082.x
  • Strobel BW 2001: Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review. Geoderma, 99, 169–198. doi:10.1016/S0016-7061(00)00102-6
  • Ström L, Owen AG, Godbold LG, Jones DL 2005: Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol. Biochem., 37, 2046–2054. doi:10.1016/j.soilbio.2005.03.009
  • Ström L 1997: Root exudation of organic acids: importance to nutrient availability and the calcifuge and calcicole behaviour of plants. Oikos, 80, 459–466. doi:10.2307/3546618
  • Vranova V, Rejsek K, Skene KR, Janous D, Formanek P 2013: Methods of collection of plant root exudates in relation to plant metabolism and purpose: a review. J. Plant Nutr. Soil Sci., 176, 175–199. doi:10.1002/jpln.201000360
  • Walker TS, Bais HP, Grotewold E, Vivanco JM 2003: Root exudation and rhizosphere biology. Plant Physiol., 132, 44–51. doi:10.1104/pp.102.019661
  • Wang P, Zhou R, Cheng JJ, Bi SP 2007: LC determination of trace short-chain organic acids in wheat root exudates under aluminum stress. Chromatographia, 66, 867–872. doi:10.1365/s10337-007-0418-0
  • Watanabe FS, Olsen SR 1965: Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil1. Soil Sci. Soc. Am. J., 29, 677–678. doi:10.2136/sssaj1965.03615995002900060025x
  • Wu YY, Jiang JY, Shuai SW, Chen DM 1997: Approach to mechanism of inorganic nutrition about Karst adaptability of Orychophragmus violaceus. J. Oil Crop Sci.-China, 19, 47–49.
  • Wu YY, Liu CQ, Li PP, Wang JZ, Xing DK, Wang BL 2009: Photosynthetic characteristics involved in adaptability to Karst soil and alien invasion of paper mulberry (Broussonetia papyrifera (L.) Vent.) in comparison with mulberry (Morus alba L.). Photosynthetica, 47, 155–160. doi:10.1007/s11099-009-0026-3
  • Xu RK, Zhu YG, Chittleborough D 2004: Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids. J. Environ. Sci.-China, 16, 5–8.
  • Yamamura T, Dateki H, Wasaki J, Shinano T, Osaki M 2004: Possibility of rhizosphere regulation using acid phosphatase and organic acid for recycling phosphorus in sewage sludge. Soil Sci. Plant Nutr., 50, 77–83. doi:10.1080/00380768.2004.10408454
  • Zhang GG, Kang YM, Han GD, Mei H, Sakurai K 2011: Grassland degradation reduces the carbon sequestration capacity of the vegetation and enhances the soil carbon and nitrogen loss. Acta Agric. Scand. B-S P, 61, 356–364.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.