3,111
Views
74
CrossRef citations to date
0
Altmetric
Soil biology

Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus Rhizophagus clarus

, , &
Pages 269-274 | Received 05 Sep 2014, Accepted 26 Nov 2014, Published online: 03 Jan 2015

REFERENCES

  • Chabot S, Becard G, Piche Y 1992: Life cycle of Glomus intraradix in root organ culture. Mycologia, 84, 315–321. doi:10.2307/3760183
  • Cordell D, Drangert J-O, White S 2009: The story of phosphorus: global food security and food for thought. Glob. Environ. Chang., 19, 292–305. doi:10.1016/j.gloenvcha.2008.10.009
  • Crowther TW, Jones TH, Boddy L, Baldrian P 2011: Invertebrate grazing determines enzyme production by basidiomycete fungi. Soil Biol. Biochem., 43(10), 2060–2068. doi:10.1016/j.soilbio.2011.06.003
  • Dalai RC 1977: Soil organic phosphorus. Adv. Agron., 29, 83–117. doi:10.1016/S0065-2113(08)60216-3
  • Declerck S, Strullu DG, Plenchette C 1998: Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia, 90, 579–585. doi:10.2307/3761216
  • Doner LW, Becard G 1991: Solubilization of gellan gels by chelation of cations. Biotechnol. Tech., 5, 25–28. doi:10.1007/BF00152749
  • Ezawa T, Yoshida T 1994: Characterization of phosphatase in marigold roots infected with vesicular-arbuscular mycorrhizal fungi. Soil Sci. Plant Nutr., 40, 255–264. doi:10.1080/00380768.1994.10413299
  • Giovannetti M, Mosse B 1980: An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol., 84, 489–500. doi:10.1111/j.1469-8137.1980.tb04556.x
  • Joner EJ, Johansen A 2000: Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol. Res., 104, 81–86. doi:10.1017/S0953756299001240
  • Koide RT, Kabir Z 2000: Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol., 148, 511–517. doi:10.1046/j.1469-8137.2000.00776.x
  • Maruyama H, Yamamura T, Kaneko Y, Matsui H, Watanabe T, Shinano T, Osaki M, Wasaki J 2012: Effect of exogenous phosphatase and phytase activities on organic phosphate mobilization in soils with different phosphate adsorption capacities. Soil Sci. Plant Nutr., 58, 41–51. doi:10.1080/00380768.2012.656298
  • Olsen SR, Sommers LE 1982: Phosphorus. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, Ed. Page AL, pp. 403–430. American Society of Agronomy, Madison, WI.
  • Olsson PA, Van Aarle IM, Allaway WG, Ashford AE, Rouhier H 2002: Phosphorus effects on metabolic processes in monoxenic arbuscular mycorrhiza cultures. Plant Physiol., 130, 1162–1171. doi:10.1104/pp.009639
  • Ozawa K, Osaki M, Matsui H, Honma M, Tadano T 1995: Purification and properties of acid phosphatase secreted from lupin roots under phosphorus-deficiency conditions. Soil Sci. Plant Nutr., 41, 461–469. doi:10.1080/00380768.1995.10419608
  • Robinson WD, Park J, Tran HT, Del Vecchio HA, Ying S, Zins JL, Patel K, McKnight TD, Plaxton WC 2012: The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. J. Exp. Bot., 63, 6531–6542. doi:10.1093/jxb/ers309
  • Scandalios JG 1969: Genetic control of multiple molecular forms of enzymes in plants: a review. Biochem. Genet., 3, 37–79. doi:10.1007/BF00485973
  • Smith SE, Read DJ 2008: Mycorrhizal Symbiosis, 3rd ed. Academic Press, London, UK.
  • Tadano T, Sakai H 1991: Secretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditions Secretion of Acid Phosphatase by the Roots of Several Crop Species under Phosphorus-Deficient Conditions. Soil Soil Sci. Plant Nutr. 37, 129–140.
  • Tarafdar JC, Claassen N 1988: Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol. Fertil. Soils, 5, 308–312. doi:10.1007/BF00262137
  • Tarafdar JC, Marschner H 1994: Phosphatase activity in the rhizosphere and Hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol. Biochem., 26, 387–395. doi:10.1016/0038-0717(94)90288-7
  • Tawaraya K, Hashimoto K, Wagatsuma T 1998: Effect of root exudate fractions from P-deficient and P-sufficient onion plants on root colonisation by the arbuscular mycorrhizal fungus Gigaspora margarita. Mycorrhiza, 8, 67–70. doi:10.1007/s005720050214
  • Tawaraya K, Naito M, Wagatsuma T 2006: Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J. Plant Nutr., 29, 657–665. doi:10.1080/01904160600564428
  • Tran HT, Qian WQ, Hurley BA, She Y-M, Wang DW, Plaxton WC 2010: Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana. Plant Cell Environ., 33, 1789–1803. doi:10.1111/j.1365-3040.2010.02184.x
  • Van Aarle IM, Plassard C 2010: Spatial distribution of phosphatase activity associated with ectomycorrhizal plants is related to soil type. Soil Biol. Biochem., 42, 324–330. doi:10.1016/j.soilbio.2009.11.011
  • Wagatsuma T, Kawashima T, Tawaraya K 1988: Comparative stainability of plant root cells with basic dye (methylene blue) in association with aluminum tolerance. Commun. Soil Sci. Plant Anal., 19, 1207–1215. doi:10.1080/00103628809368006
  • Wang LS, Lu S, Zhang Y, Li Z, Du XQ, Liu D 2014: Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation. J. Integr. Plant Biol., 56, 299–314. doi:10.1111/jipb.12184
  • Wasaki J, Maruyama H, Tanaka M, Yamamura T, Dateki H, Shinano T, Ito S, Osaki M 2009: Overexpression of the LASAP2 gene for secretory acid phosphatase in white lupin improves the phosphorus uptake and growth of tobacco plants. Soil Sci. Plant Nutr., 55, 107–113. doi:10.1111/j.1747-0765.2008.00329.x
  • Weber RWS, Pitt D 1997: Purification, characterization and exit routes of two acid phosphatases secreted by Botrytis cinerea. Mycol. Res., 101, 1431–1439. doi:10.1017/S0953756297004139

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.